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Abstract

Modern computations must regularly interact with imprecise sensors, deal with hardware

failures, and operate on incomplete or inaccurate input data. Developers may also resort to

intentionally adding approximate algorithms and machine learning models to such compu-

tations in order to make them tractable.

Uncertainty analyses provide developers with the means to ensure that uncertainty in-

troduced into a computation in this manner does not lead to unwanted or dangerous con-

sequences. However, developers regularly modify modern computations throughout their

lifetime to fix bugs and add features. An uncertainty analysis can become prohibitively

expensive if it must be run from scratch every time a developer modifies the computation.

Compositional analyses of uncertainty, which analyze different components of a computa-

tion in isolation and then analyze the overall computation, would have a clear advantage in

this scenario; when a computation is modified, it would not be necessary to re-analyze the

unmodified components. While researchers have developed compositional analyses for test-

ing a variety of other properties, there is less work on developing compositional and precise

analyses of uncertainty.

In this dissertation, I present my work which shows that composable uncertainty anal-

yses can have precision close to that of monolithic, non-composable uncertainty analyses.

First, I describe a statistical analysis of the accuracy of approximate randomized algorithm

implementations and computations running on unreliable hardware. Second, I describe a

composable analysis of uncertainty in autonomous vehicle systems. Third, I describe an

analysis that calculates how recovery mechanisms can increase the reliability of critical sub-

computations running in an unreliable environment. Lastly, I describe a composable analysis

that determines how soft errors affect computations and selects sets of vulnerable instructions

to protect. The availability of composable analyses of uncertainty will encourage developers

to regularly test the effects of proposed changes on the uncertainty characteristics of modern

computations, possibly as part of regression testing suites.
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Chapter 1: Introduction

The presence of uncertainty is a first-class concern for modern computations1. Some

forms of uncertainty are inherently unavoidable. For example, modern computations must

regularly deal with noise from imprecise sensors [1, 2, 3], hardware failures [4, 5, 6, 7, 8, 9],

and missing or unreliable input data [10, 11, 12]. Developers may also choose to intentionally

introduce uncertainty into a computation. For example, approximate algorithms are often

necessary when processing large volumes of data [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26], imprecise machine learning models are increasingly becoming a part of computations

in order to autonomously perform tasks that would otherwise require human effort [27,

28, 29, 30], and in differential privacy [31, 32], developers reduce the exposure of sensitive

information by intentionally adding noise to a computation’s data.

The tolerance of computations to uncertainty varies from domain to domain. In domains

such as audiovisual media processing, the output does not need to be fully precise to be

acceptable to a user, and this fact is often exploited to save resources [33, 34, 35, 36, 37].

Some computations are naturally self-stabilizing, in the sense that they can gradually reduce

uncertainty over time. For example, iterative methods for finding roots of equations start

from an initial guess and refine it to arrive at the solution [38, 39]. In domains such as robotic

surgery, automatic medical diagnosis, and autonomous vehicles, developers must carefully

control uncertainty to prevent loss of life and damage to property. For example, there

are growing calls to regulate the behavior of potentially imprecise systems in autonomous

vehicles [40, 41, 42, 43].

Uncertainty analyses. Developers use uncertainty analyses to ensure that the error in

the output of a computation is within acceptable levels. These uncertainty analyses consider

how uncertainty can be introduced into the computation, and how it propagates through

the computation up to its output [36, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,

58, 59, 60]. Some uncertainty analyses go further by adding approximations to existing

computations that introduce an acceptable level of uncertainty in exchange for performance

benefits [37, 61, 62, 63, 64, 65, 66] or by adding mechanisms to detect and recover from the

negative effects of excessive uncertainty [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79].

Depending on the complexity and precision of an uncertainty analysis and the complexity of

the analyzed computation, the time required for the analysis can range from a few seconds

to several hours.

1In the scope of this dissertation, computations encompass programs and simulations of software-
intensive systems.
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Modern computations regularly undergo changes throughout their lifetime. Even after

the initial development and testing of the computation is finished and they are deployed in

the real world, developers continue to make changes to them to fix newly found bugs or add

new features. These frequent changes complicate the task of efficiently using uncertainty

analyses to prove that the uncertainty in the output of a computation is tolerable, or that

the computation will not violate a safety property due to excessive uncertainty. Most uncer-

tainty analyses must analyze the entire computation from scratch after each change, which

is prohibitively expensive.

Compositional analyses of uncertainty would offer a clear benefit in such scenarios. A

conventional compositional analysis first divides the computation into multiple components.

Second, it performs sub-analyses on some or all of these components in isolation from the

rest of the computation. Finally, it analyzes the computation as a whole. In this last step,

the compositional analysis uses the results of the component-wise sub-analyses to simplify

the end-to-end analysis. The goal of a compositional analysis is to reuse analysis results each

time a small change is made to the computation. If only one component of the computation is

modified, then it is often unnecessary to again perform the sub-analyses on the unmodified

components. Instead, the compositional analysis performs the sub-analyses only on the

modified components. Then, it uses the new results of the sub-analyses for the modified

component when it analyzes the computation as a whole.

Researchers have developed several compositional analyses for testing, optimization, and

traditional safety verification. Compositional symbolic execution [80] finds assertion viola-

tions in large computations in a scalable manner. SMART [81] tests functions in isolation

and creates summaries that can be used when testing computations using those functions.

Compilers regularly use intra-procedural analyses [82] to optimize each procedure within a

computation in isolation.

Compositional analyses of uncertainty (and safety in the face of uncertainty) have received

comparatively less attention from researchers. Chisel [36] creates and uses specifications

that describe the effects of uncertainty on a function when analyzing the uncertainty of a

computation using it. Pasareanu et al. [83] separately analyze learning based components

of autonomous vehicles, and use the analysis results when reasoning about safety properties

of the full vehicle system.

Compositional analyses are only useful if they do not lose significant precision over mono-

lithic analyses that analyze the full computation at once. Moreover, compositional analyses

must carefully consider how separately analyzed components interact with and affect the

results of one another. If a component of a computation is modified, the compositional anal-

ysis must correctly account for the change in interaction of the modified component with

2



Table 1.1: Overview of work described in this dissertation

Technique Uncertainty source Key aspects

AxProf [84] Algorithm, hardware Specification language, statistical analysis
GAS [85] Input, algorithm Surrogate modeling to reduce simulation cost
Aloe [86] Hardware Specification language, probabilistic verification
FastFlip [87] Hardware Compositional error injection and propagation analysis

the rest of the computation.

For uncertainty analyses, an additional complicating factor is that components of a com-

putation may propagate uncertainty differently depending on the input or input distribution.

Uncertainty analyses such as Chisel [36] must make rigid assumptions about the input in or-

der to mitigate this issue. For example, if Chisel separately analyzes a function and wishes to

integrate the function into a computation, it must either 1) use an imprecise specification of

the effect of uncertainty on the function, or 2) use a precise specification that is only applica-

ble to a small subset of possible function inputs. Analyses of uncertainty caused by hardware

errors must additionally consider how components may cause unexpected interactions in the

form of side effects that would not occur in an error-free execution.

1.1 DISSERTATION STATEMENT

My dissertation statement is as follows:

A compositional analysis of the effects of uncertainty on a computation can have pre-

cision close to that of a monolithic analysis of the computation, while saving time

over the monolithic analysis when the computation is modified throughout its lifetime.

1.2 DISSERTATION OVERVIEW

Table 1.1 provides an overview of my contributions in support of the dissertation state-

ment. Column 1 shows the name of the technique. Column 2 shows the source of uncertainty

in the computation that the technique analyzes. For all sources, the probability that un-

certainty is present and the magnitude of uncertainty can vary. Column 3 briefly describes

some key aspects of the technique. The subsequent chapters in this dissertation describe

each contribution in detail:

Chapter 2: AxProf. AxProf [84] is a framework for statistical testing of implementa-

tions of approximate algorithms, and of computations running on power-saving but unre-

liable hardware. The authors of theoretical approximate algorithms provide probabilistic
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accuracy and performance guarantees when proposing the algorithm. To statistically test

an implementation of such an algorithm to ensure that it satisfies these guarantees, it is

necessary to gather the implementation’s accuracy and performance metrics over a sufficient

quantity of executions, and then apply one or more appropriate statistical tests. Similarly,

manufacturers of unreliable hardware provide probabilistic guarantees about the likelihood

of hardware failures. To statistically test a computation running on such hardware to ensure

that it satisfies user-specified reliability guarantees, it is necessary to gather information

about the computation’s reliability over a sufficient quantity of executions, and then apply

one or more appropriate statistical tests.

The AxProf framework automates most of this data gathering and statistical testing pro-

cess. The developer provides the theoretical or desired accuracy and performance specifica-

tions in an unambiguous mathematical notation. Given these specifications, AxProf gener-

ates code to execute the implementation or computation a statistically significant number of

times and then automatically apply the appropriate statistical test(s). We used AxProf to

analyze twelve approximate algorithm implementations and three computations running on

unreliable hardware. AxProf found five previously unknown bugs among the approximate

algorithm implementations. After we fixed these implementations, AxProf verified that they

now satisfied the accuracy and performance specifications.

The approximate algorithms whose implementations we analyzed with AxProf are used as

sub-components of larger applications such as image search and clustering, efficient caching,

web traffic estimation, data stream summarization, constrained optimization, etc. These

applications depend on the correctness of the approximate sub-components to ensure the

validity of the overall accuracy and performance guarantees. AxProf’s statistical testing

ensures that the sub-components behave as expected, allowing developers and compositional

analyses of the end-to-end applications to rely on the algorithm’s accuracy guarantees.

Chapter 3: GAS. GAS [85] is an approach for creating fast and accurate surrogate mod-

els of complex, end-to-end autonomous vehicle systems. High-fidelity simulations of these

complex systems for evaluating vehicle safety are costly, especially as these systems are

modified over the course of development. Such systems regularly contain complex state per-

ception and control components, which hinder the creation of less computationally intensive

surrogate models. GAS’s two-stage approach first replaces complex perception components

with a perception model. Then, GAS constructs a surrogate model of the complete vehicle

system. GAS enables the construction of various types of surrogate models, but we found

that Generalized Polynomial Chaos (GPC) produced the most consistently precise surrogate

models. GAS’s approach also allows for reuse of the perception model when vehicle control
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and dynamics characteristics are altered during vehicle development, saving significant time.

We demonstrate the use of these surrogate models in two applications. First, we estimate

the probability that the vehicle will violate a safety property over time. For example, we

estimate the probability that a crop monitoring vehicle will hit a row of crops. Second, we

perform global sensitivity analysis of the vehicle system with respect to its state in a previous

time step. For both applications, we consider five scenarios concerning crop management

vehicles that must not crash into adjacent crops, self driving cars that must stay within

their lane, and unmanned aircraft that must avoid collision. Each of these systems contains

a complex perception or control component. GAS’s surrogate models provide an average

speedup of 3.7× when estimating the probability of violating a safety property and 1.4× for

sensitivity analysis, while still maintaining high accuracy.

Chapter 4: Aloe. Aloe [86] is a static analysis that quantifies the reliability of compu-

tations that are susceptible to soft errors (e.g., bitflips due to noise) and which attempt to

mitigate such errors using recovery mechanisms.

Aloe models recovery mechanisms using try-check-recover blocks. The try block performs

an imprecise computation, the check block checks the result for errors, and the recover block

re-executes the computation if an error is detected. Aloe analyzes the reliability of try-check-

recover blocks separately from the rest of the computation. Aloe then uses this calculated

reliability as an input when calculating the reliability of the end-to-end computation. Aloe

can reason about either precise or imprecise error detection and recovery mechanisms.

We implemented Aloe and analyzed eight computations used for web search, media pro-

cessing, financial analysis, graph processing, and numerical analysis. Compared to previous

works, Aloe was able to verify stricter reliability guarantees of the try-check-recover blocks

as well as the end-to-end computations.

Chapter 5: FastFlip. FastFlip [87] is a compositional error injection analysis that aims

to find assembly instructions in a program that are vulnerable to Silent Data Corruptions

(SDCs) in the presence of errors. Unlike detectable errors (e.g., out of bounds outputs) or

crashes, SDCs may not be detected until they negatively affect the outputs of downstream

applications. FastFlip divides the program into multiple sections and analyzes each section

separately. FastFlip calculates how SDCs are propagated from one program section to an-

other to obtain the set of vulnerable instructions for the whole program. FastFlip saves a

significant amount of analysis time when the program is modified; in the best case scenario,

FastFlip must only perform expensive error injection analysis on the modified section and

can reuse the previous results for the other sections.
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We instantiate FastFlip by using the Approxilyzer [54] error injection analysis and the

Chisel [36] SDC propagation analysis and use it to analyze five benchmarks, along with

two modified versions of each benchmark. FastFlip speeds up the analysis of incrementally

modified programs by 3.2× on average. FastFlip selects a set of instructions to protect

against SDCs; we compare this set to the set of instructions selected by an Approxilyzer-

only approach. FastFlip’s selection protects against a similar number of SDCs for a similar

overhead as Approxilyzer’s selection, even when programs are modified.

Analyses such as Aloe can use FastFlip’s results to determine the reliability of sub-

computations in the try and recover blocks in order to calculate the overall reliability of

a computation with recovery mechanisms. Likewise, we also use FastFlip to confirm that

modifications that add SDC detection mechanisms to computations increase the overall re-

liability of the computation.

Chapter 6: Conclusion and future work. Lastly, I conclude the dissertation and

discuss some interesting directions for future research based on my current work.
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Chapter 2: AxProf

Applications such as machine learning, data analytics, computer vision, financial and

weather forecasting, and content search require low-latency processing of massive data sets.

To process such large amounts of data in a timely manner, researchers have developed various

approximate algorithms and data structures that reduce resource consumption at the cost

of accuracy. Similarly, applications running on resource-constrained devices, such as those

used in edge computing or digital agriculture, may have to use such approximate algorithms

and data structures, as well as unreliable low-power hardware, to limit energy consumption.

Many approximate algorithms come with analytically derived specifications of accuracy

that are typically probabilistic in nature. For example, Locality Sensitive Hashing (LSH) [13,

14] finds neighbors in a set of points, by using a hash function that produces similar hashes

for nearby points. LSH guarantees that it will find nearby points with high probability.

Such probabilistic specifications have been proposed for applications in areas as diverse as

theoretical computer science [15, 16, 17, 18, 19, 88], numerical computing [20, 21, 22, 89],

and databases [23, 24, 25, 26, 90]. Probabilistic specifications are also used to describe the

reliability of low-power hardware and by compilers and analyses that target computations

running on such hardware [36, 44, 47, 91, 92, 93].

In order to ensure the validity of the accuracy guarantees of the overall application, it is

vital that these uncertain computations2 satisfy their probabilistic specifications of accuracy.

Unfortunately, despite the availability of rigorous specifications, a software developer who

needs to implement, test, and tune these uncertain computations has little tool support for

this effort. Standard profilers only track and build models of run time and memory con-

sumption for individual inputs [94, 95, 96] or build performance models for multiple input

sizes in the case of algorithmic profiling [97, 98]. While researchers have provided guide-

lines for rigorously applying statistical testing in software engineering [99], developers must

manually perform numerous tasks to implement these guidelines: infer the properties of the

mathematical (probabilistic) specification, write code to check this specification, decide on

the appropriate statistical test and its parameters (e.g., confidence or power), provide appro-

priate inputs, and interpret obtained statistical metrics. Frustrated by such manual effort,

developers often resort to ad-hoc testing that provides insufficient statistical confidence, or

leads to overly conservative choices of test parameters. Moreover, manually written testing

code can itself have subtle bugs that reduces its effectiveness. A more promising alternative

is to automate these tasks with dedicated profiling and testing frameworks.

2In the scope of this chapter, uncertain computations refer to implementations of approximate random-
ized algorithms and computations running on unreliable hardware.
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Our work. We present AxProf, an algorithmic profiling framework for analyzing primarily

accuracy, but also resource consumption of uncertain computations. AxProf gathers data on

accuracy and resource usage, uses statistical tests to check if any of this data deviates from

the developer-provided specifications, and warns the developer if that is the case. AxProf is

available as open-source software at www.axprof.org.

The key novelty of AxProf is the automatic generation of statistical testing code from

a high-level mathematical probabilistic specification. AxProf also determines the number

of inputs or executions required in order to achieve a desired level of statistical confidence.

AxProf supports probability predicates, which reason about the probability that the output

of an uncertain computation satisfies a certain condition, and expectation predicates, which

reason about the expected value of the output. AxProf also supports universal quantification,

which requires such predicates to hold over a range of input or output items. These predicates

together capture the key properties of many representative randomized and approximate

algorithms and unreliable computations. For instance, they are expressive enough to describe

a majority of the accuracy specifications of the algorithms from [100]. An important concern

of AxProf’s language design is to present the specifications in an unambiguous manner.

In general, probabilistic specifications can be defined over different sets of events, which

may require different sampling procedures. In AxProf, a developer explicitly writes if a

probabilistic specification is over inputs, items within an input, or executions, in line with

the theoretical specification.

Statistically testing uncertain computations often requires a large number of concrete

inputs. To automatically produce representative inputs, AxProf provides several input gen-

erators for scalars, vectors, and matrices. The developer can adjust the parameters of the

input generators and use these parameters as part of the accuracy and performance spec-

ifications. We present a dynamic analysis that infers which input generator properties are

relevant to the application’s accuracy.

Results. We evaluated AxProf on a set of twelve implementations of well-known ran-

domized approximate algorithms from the domains of data analytics and numerical linear

algebra, as well as three computations running on simulated unreliable hardware. Each

application has an analytically derived specification of accuracy, performance, and memory

consumption. We demonstrate that AxProf can help developers in two scenarios: 1) profiling

to understand the behavior of the application and 2) identifying potential errors.

AxProf helped us to identify and fix previously unknown problems with five different im-

plementations of approximate algorithms. Our analysis shows that these problems could

not have been identified with standard profilers that track only memory or runtime. The

8
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problems were caused by incorrect implementations of the algorithms or their key compo-

nents like hash functions. AxProf also identified some implementations that used additional

optimizations in their resource consumption. These optimizations resulted in a different

complexity of resource consumption than that specified by the algorithm authors. For in-

stance, some implementations allocated resources dynamically (only when needed) or used

polyalgorithms (i.e., they composed multiple algorithms that work better for different input

sizes, and switched algorithms dynamically).

These results demonstrate that AxProf’s focus on accuracy analysis opens a new dimen-

sion in algorithmic profiling. AxProf’s statistical testing ensures that vital approximate and

randomized sub-components of data-centric applications behave as expected, allowing devel-

opers and compositional analyses of the end-to-end applications to rely on the algorithm’s

accuracy guarantees.

2.1 EXAMPLE

Locality Sensitive Hashing (LSH) [13, 14] is an algorithm for finding points that are near

a given query point in multidimensional space. Instead of directly computing the distance of

the query point to every other point in the space, LSH maintains a compact representation

of the points and their locations using a set of hash maps. The keys of the maps are hash

signatures and the values are the list of points with that signature.

To obtain a hash signature of a point, LSH uses a locality sensitive hash function. De-

pending on the desired similarity metric between points (`1 distance, `2 distance, cosine

similarity, etc.), different LSH function families exist which hash similar points according to

that metric to the same hash signatures with high probability.

When it receives a query, LSH calculates the query point’s signature and returns all stored

points with that signature. LSH can increase the number of similar points found by using l

different hash maps. LSH can also concatenate signatures from k different hash functions as

the keys in each hash map to increase the probability that dissimilar points will be mapped

to different bins. Each of these hash functions must be drawn uniformly at random from

the same hash family.

AxProf specification. We assign each point in the dataset an index. One representation

of the LSH output is a list of pairs of indices (qi, di), where the first index qi is the index of

the query point q and the second index di is the index of the detected neighbor d. For our

example, we use the same set of points as both data points and query points, to find groups

of neighboring points within the dataset.
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1 Input list of (list of real);

2 Output list of (list of real);

3 TIME k*l*datasize;

4 SPACE l*datasize;

5 ACC forall di in indices(Input), qi in indices(Input) :

6 Probability over runs [ [qi, di] in Output ] ==

7 HashEqProb(Input[di], Input[qi], k, l)

Figure 2.1: AxProf specification for LSH

Suppose an individual hash function chosen uniformly at random from the desired hash

function family puts the points d and q in the same hash bin with probability pd,q, where

pd,q is higher when d and q are more similar according to the similarity metric. Then, for

all d and q, the probability that LSH will include (qi, di) in its output is 1− (1− pkd,q)l [13].

Figure 2.1 shows how we write the full specification in the AxProf specification language.

Lines 1 and 2 indicate the data types of the input and the output, respectively. Lines 3 and

4 give the time and memory usage specification of LSH, respectively. As each point must be

stored in each hash table, the memory usage is O(ln), where n is the number of data points.

Storing a point requires calculating lk hashes. The total time required to construct the hash

tables is O(lkn).

The last three lines give the accuracy specification. Informally, it specifies that, for all

possible pairs of indices over the input (qi, di), the probability that a particular execution

of LSH has [qi,di] in its output is equal to the return value of HashEqProb, which is a

user-defined function that calculates the expression 1− (1− pkd,q)l.
AxProf uses this specification to automatically generate code to check that the property

holds. The code aggregates the outputs of the implementation over multiple executions.

Then, for each pair of indices, it calculates the fraction of executions for which the pair is in

the output. It compares this fraction against the return value of HashEqProb using the bino-

mial test. Finally, it combines the results of the binomial tests for each pair of indices using

Fisher’s method [101]. For time and memory, AxProf generates code to perform regression

and checks if the time and memory usage varies according to the provided specifications

when k, l, and n are varied. The full details of code generation are shown in Section 2.3.

Testing the implementation. We tested TarsosLSH [102], an implementation of LSH

in Java that has its own testing framework and over 100 stars on GitHub. The algorithm

can be configured through two parameters k and l, for which the developer specifies a list

of values of interest. We instruct AxProf to uniformly generate random 2D points with each

coordinate in the range [−10, 10].
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(a) Before (b) After fixes 1 and 2 (c) After fixes 1-4

Figure 2.2: TarsosLSH : comparison of accuracy of the implementation before and after bug
fixes. Each dot compares the expected and observed probability for a query-datapoint pair.
Ideally all dots should lie on the diagonal line.

Identifying and fixing bugs. While profiling TarsosLSH for the `1 distance metric,

AxProf indicated errors for several values of k and l. We used the visualization feature of

AxProf and observed that many points were not being considered similar at all, as shown

in Figure 2.2a. Each dot in the plot represents a query-datapoint pair. The x and y

coordinates of the point denote the expected and observed probability, respectively. Ideally,

all dots should lie close to the diagonal line.

This prompted us to investigate the hash function used for `1 distance. We found that

there were several inaccuracies in the implementation and use of the hash function. We

fixed a bug that occurred due to operator precedence, followed by a bug caused by incorrect

assumptions about the rounding of floating point values. Fixing these two bugs led to the

result in Figure 2.2b. While this new result seemed to conform with the diagonal line as

expected, AxProf’s statistical tests reported that the number of outliers was still too high,

indicating that more bugs were present.

On further investigation we found a bug in the method by which the implementation

chose a hash function from the hash function family, and a bug in the method by which the

outputs of the k different hash functions for a hash table were combined. Fixing these two

bugs led to the result in Figure 2.2c. After fixing the fourth bug, AxProf indicated that the

implementation conformed with the accuracy specification.

The implementation included a test method which tested the algorithm with various pa-

rameters. However, there was an error in the test code that miscounted the number of false

negatives. This led the test to overestimate the recall of the implementation, i.e., the per-

centage of nearby points that were correctly identified. A user that depended on the results

of this test would mistakenly believe that the implementation was correct, illustrating the

need for automated tools like AxProf.
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Figure 2.3: Overview of the AxProf framework

2.2 AXPROF OVERVIEW

Figure 2.3 presents an overview of the AxProf framework.

Inputs. AxProf takes three types of inputs:

• Implementation and parameters: AxProf takes an implementation of the uncertain

computation to test and a set of typical configuration parameter ranges that the de-

veloper wishes to test the computation on.

• Property specification: The user provides an accuracy, time, and memory specification

in a high-level language that resembles the mathematical specifications provided by

the algorithm authors or hardware manufacturers.

• Input generator settings: AxProf provides several input generators for scalar, vector,

and matrix data. Alternatively, the user can provide a custom input generator. The

user can allow AxProf to infer parameters that are relevant to the accuracy of the

uncertain computation, or fix some or all of the parameters to specific values that the

user wants to test.

Components. AxProf has multiple components:

• The checker generator takes an accuracy, time, and memory usage specification from

the user and generates code to aggregate output and resource consumption data and

check that this data conforms to the specifications.

• The input generator generates inputs to test the implementation. It can experiment

with various input parameters to determine which ones affect the accuracy of the

uncertain computation.
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c ∈Constants
x ∈Vars ∪ {Input, Output}
f ∈ Functions

aop ∈ {+, -, *, /, ^}
bop ∈ {&&, ||}
rop ∈ {==, >, . . .}

Spec ::= TDclr TIME DExpr ; SPACE DExpr ; ACC ASpec
TDclr ::= Input Type; Output Type; (x Type;)∗ (f Type;)∗

Type ::= real | matrix | list of Type | map from Type to Type
ASpec ::= Probability over Qualif [BExpr ] rop DExpr

| Expectation over Qualif [DExpr ] rop DExpr
| forall Range + : ASpec
| let x = DExpr in ASpec

Qualif ::= runs | inputs | Range +

Range ::= x in DExpr | x in uniques(DExpr) | x in indices(DExpr)
BExpr ::= BExpr bop BExpr | ¬BExpr | DExpr in DExpr | DExpr rop DExpr
DExpr ::= c | x | x[DExpr ] | |DExpr| | DExpr aop DExpr | f(DExpr+) | [DExpr+]

Figure 2.4: The AxProf specification language

• The runner executes the implementation on an AxProf-provided input. It returns the

generated output and resource consumption statistics to AxProf.

• The analyzer uses the code generated by the checker generator to test whether the

implementation conforms to the provided specifications, and issues a warning if that

is not the case. The developer can set parameters that influence how sensitive the

statistical analyses are.

• The visualizer plots resource usage and accuracy statistics for visual inspection.

Specification language. The user writes probabilistic specifications of resource consump-

tion and accuracy in a high-level language. Figure 2.4 presents its grammar. Specifications

consist of type declarations, a time expression, a memory expression, and an accuracy speci-

fication. Knowing the input and output types allows AxProf to generate inputs in the correct

format and correctly connect the checkers with the rest of the framework.

The specification can contain the special variables Input (the input data) and Output

(the computation’s output). The computation’s configuration parameters can be accessed

within the specification using their name. AxProf allows the developer to call helper func-

tions written in Python. These functions may implement complicated testing conditions or

compute exact solutions through an oracle.

The accuracy specification encodes two common predicates: 1) probability comparison

(Probability over Qualif ) and 2) expectation comparison (Expectation over Qualif ).
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Both predicates explicitly define the probability space via a qualifier. The qualifier can be a

list of items, a set of executions (runs), or a set of inputs. If the qualification is over items in

the input, each item has equal weight, as used in the average-case analysis of algorithms [103].

The accuracy specification can include universal quantification over one or more lists of items

(forall Range +). AxProf interprets these quantifiers as the requirement that the tests of

the predicates inside the quantifiers should be correct for each item in the list.

2.3 CHECKER CODE GENERATION

AxProf derives statistical hypotheses from the accuracy specification and generates code

to test them with common statistical tests. AxProf also calculates the number of executions

or inputs necessary for obtaining sufficient statistical confidence. AxProf also generates code

to check resource utilization specifications.

2.3.1 Background on Statistical Testing

A statistical hypothesis can be tested by observing samples of one or more random vari-

ables. A tester forms two hypotheses: a null hypothesis and an alternative hypothesis. Then

they use an appropriate statistical test to calculate a p-value: the probability of obtaining a

test statistic at least as extreme as the one observed, assuming the null hypothesis is true.

If the p-value is too low, the tester can reject the null hypothesis.

Several statistical tests are available for various use cases. These tests are either parametric

(they make some assumption about the population from which the data is drawn) or non-

parametric (they make no such assumptions). Parametric tests are generally more powerful

at detecting statistical anomalies, while non-parametric tests can handle more types of data

and small sample sizes. AxProf uses the statistical tests described below.

The binomial test [104] is an exact non-parametric test used to compare the observed

probability (p) of an event against an expected or threshold probability (p0). For example,

to test specifications that state p ≤ p0 we formulate a null hypothesis H0 : p ≤ p0 and test

it against the alternative hypothesis H1 : p > p0 using the binomial test. The greater one-

tailed, lesser one-tailed, and two-tailed variants of this test respectively check if the observed

probability is too high, too low, or different to the expected probability.

The one-sample t-test [105] is a parametric test used to compare the mean of one set of

samples (µ) against an expected or threshold mean (µ0). For example, to test specifications

that state µ = µ0 we formulate the null hypothesis H0 : µ = µ0 and test it against H1 : µ 6= µ0

using the t-test. This test too has one and two-tailed variants. Although the t-test requires
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that the sample mean is normally distributed, when the sample size is large enough, this

requirement can be assumed to hold.

Another approach to perform hypothesis testing is to use sequential testing, where hy-

pothesis testing is performed as samples are collected. The Sequential Probability Ratio Test

(SPRT) [106] is a technique for selecting between two hypotheses with a minimum number

of samples. SPRT maintains a likelihood ratio, updated after each sample, that rates two

hypotheses based on the observed samples. Based on this ratio one hypothesis is accepted,

or more samples are gathered until enough evidence is available to pick one.

Fisher’s method [101] is a technique for combining the results of multiple statistical tests

for the same null hypothesis. Each individual test produces a p-value for the hypothesis.

Fisher’s method is then used to calculate a single p-value for the entire set of tests. If this

combined p-value is too low, then the null hypothesis can be rejected. Otherwise the null

hypothesis cannot be rejected even if some of the individual tests failed. Fisher’s method

assumes that the results of the individual tests are independent, which is not always true.

If the tests are dependent, using Fisher’s method may result in a p-value lower (but never

higher) than the correct p-value.

2.3.2 Generating Accuracy Checker Code

Based on the accuracy specification, AxProf needs to select what statistical test to use

and how many samples are needed for the statistical test based on the required level of

confidence. In addition, AxProf needs to decide how to aggregate output data over multiple

executions or inputs and when to use the aggregated data to perform the statistical tests:

after every execution, after multiple executions for the same input, or after executions on

multiple inputs.

AxProf supports three main types of accuracy specifications and selects the statistical test

based on the type of ASpec expression from the specification language and the comparison

operator used in its predicate.

Probability predicates. Specifications of the form

Probability over Qualif [ BExpr ] rop DExpr

require testing the probability of satisfying the inner boolean expression (BExpr) against the

probability DExpr.

Each element in the space defined by Qualif can be treated as one sample drawn from a

Bernoulli distribution which is 1 if BExpr is satisfied and 0 otherwise. This allows us to use

15



the binomial test to compare DExpr with the probability of the Bernoulli variable. Based on

the probability space defined by the user in Qualif, AxProf needs to gather sample outputs

of the implementation over multiple executions or inputs to calculate the fraction of elements

that satisfy BExpr:

• If Qualif is runs, the accuracy specification defines a probability over a set of exe-

cutions of the implementation on the same input. AxProf does so and calculates the

fraction of executions that satisfy BExpr. At profiling time, AxProf sets the number

of executions to the number of samples required for the binomial test (Section 2.3.3).

If the developer provides multiple inputs, then the implementation is expected to pass

the test for each input separately.

• If Qualif is inputs, the accuracy specification defines a probability over the inputs

of the program. In this case, AxProf executes the implementation on multiple inputs

and calculates the fraction of inputs for which the implementation satisfies BExpr. At

profiling time, AxProf sets the number of inputs to the number of samples required

for the binomial test (Section 2.3.3). AxProf generates the test inputs using its input

generators (Section 2.4).

• If Qualif is a list of items (Range+), after each execution of the implementation, Ax-

Prof calculates the fraction of items in the list that satisfy BExpr. AxProf performs

a binomial test separately for each execution on each input. The specification should

hold for each execution and input. While AxProf cannot prove this property with full

certainty, it can do so with high confidence. In particular, we formulate the null hy-

pothesis that the implementation succeeds with very high probability (0.999 or greater)

and use the SPRT to estimate the number of executions and inputs that are sufficient

to check this weaker property (Section 2.3.3).

In all cases, the fraction of samples (executions, inputs, or items) that satisfy BExpr is

compared against the value of DExpr using the binomial test. If AxProf observes enough

evidence to reject the null hypothesis, it issues a warning to the user. Depending on the

comparison operator used (rop), AxProf chooses one of the three variants of the binomial

test (greater one-tailed, lesser one-tailed, or two-tailed).

Expectation predicates. Specifications of the form

Expectation over Qualif [ DExpr1 ] rop DExpr2
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require comparing the value in expression DExpr1 against the expected value in expression

DExpr2. AxProf gathers samples of the value of DExpr1 over Qualif and calculates their

mean. For large enough sample sizes, this sample mean value is an estimate of the real mean

value and can be considered to be drawn from a normal distribution centered around the real

mean value. This allows us to use of the t-test for comparing the sample mean against the

expected value. Similar to the probability predicates, depending on the comparison operator

used (rop), AxProf chooses one of the three variants of the t-test.

Based on the sample space defined by the user in Qualif, AxProf may have to gather

sample outputs of the implementation over multiple executions or inputs (as in the case

of the probability predicate). AxProf calculates the value of DExpr1 for each sample and

takes the mean. AxProf then compares this mean against the expected mean DExpr2 using

the appropriate t-test. The process of gathering samples is similar to the process used for

probability predicates, except that AxProf calculates and gathers the number of samples

required for the t-test.

Universally quantified predicates. Specifications of the form

forall Range+ : ASpec

require that each element in Range+ satisfy the accuracy predicate ASpec (a probability or

expectation specification).

AxProf performs the statistical test required for the probability or expectation specifica-

tion ASpec as described in the previous paragraphs for each individual element in Range+.

The null hypothesis for each test is that the implementation satisfies ASpec for that element,

the alternative being that it does not satisfy ASpec. This results in multiple p-values, one

for each element in Range+.

Next, AxProf combines the p-values obtained from the individual tests into a single p-value,

to test if the overall specification is satisfied. AxProf uses Fisher’s method for this purpose.

2.3.3 Determining the Required Number of Samples

For statistical tests, the required number of samples depends on the test being used, the

desired significance level α, the statistical power 1 − β, and other test-specific parameters.

The user can specify these parameters to control the rate of false positives and negatives

and the runtime of AxProf.
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Binomial test. The number of samples required also depends on the size of the indifference

region, δ, which determines the minimum deviation from the expected probability that the

test will be able to detect [107]. The minimum number of samples required to achieve the

required statistical confidence is(
zsig

√
p0(1− p0) + z1−β

√
pa(1− pa)

δ

)2

(2.1)

where for any probability q, zq is the critical value of the normal distribution for q. Here,

zsig is z1−α/2 for a two-tailed test and z1−α for a one-tailed test.

One-sample t-test. The number of samples required also depends on the effect size d =

|µ0 − µ1|/σ, the difference in the means corresponding to the null hypothesis (µ0) and an

alternative hypothesis (µ1) divided by the standard deviation (σ) of the sample being tested.

The minimum number of samples required is

(tsig + tβ)2

d2
(2.2)

where for any probability q, tq is the critical value of the student t-distribution for q. Here,

tsig is tα/2 for a two-tailed test and tα for a one-tailed test.

SPRT. To calculate the minimum number of executions, AxProf uses SPRT with the

minimum success probability H and the maximum failure probability L, as

log(β)− log(α)

log(H)− log(L)
(2.3)

AxProf ensures that each individual execution passes the test.

2.3.4 Analyzing Resource Utilization

To analyze the time and memory consumption of a computation, AxProf employs curve

fitting to build the most likely regression model and checks the quality of the fit. As the

first step, AxProf generalizes specification expressions provided by the developer to capture

the hidden constants in asymptotic notations. For example, if the specification of resource

consumption is the expression x + yz, then AxProf will generate the general expression

p0x+(p1y+p2)(p3z+p4)+p5. For this expression, AxProf searches for the values of the free

variables p0...5 that best fit the data using statistical curve fitting [108]. The curve fitting
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procedure computes the R2 metric, which quantifies how well the model fits the observed

data. Higher R2 values indicate better fitting models. AxProf triggers a warning if the R2

metric is too low.

2.4 INPUT GENERATION

To generate random inputs to test the computations, AxProf can use one of three input

generators, each of which can control different aspects of the generated data:

• Scalar generator: This generator can be used to generate a list of integers or real

numbers. It can sample the numbers from a variety of distributions with controllable

parameters. It also provides control over the ordering of numbers, or the difference

between adjacent numbers.

• Matrix generator: This generator can be used to generate a matrix of given dimensions

with random elements. In addition to the parameters from the scalar generator, this

generator also provides control over matrix-specific properties such as sparsity.

• Vector generator: This generator can be used to generate a list of vectors with a given

number of dimensions. This generator also provides control over the same parameters

as the scalar generator. In particular, it provides control over the distance between

vectors measured by various metrics.

AxProf also allows the developer to use specific random seeds to enable reproducibility.

AxProf can be easily extended with additional input generators, or the developer can specify

a custom input generator.

Automatically selecting input generator features. Identifying what input features

affect the accuracy of a program is important to selecting a input generator and deciding

what inputs to test. Each generator described above has input features that can be used to

control the generated inputs.

We adapt a technique from [109] to select important input features that need to be ex-

plored. We use the Maximal Information Coefficient (MIC) [110] to identify relationships

between input features and the accuracy of a program. For each input feature available

in an input generator, we perform sample executions of the program implementation while

varying that input feature and calculate the accuracy of the output. We use this data to

calculate a MIC value. If the MIC value is above a certain threshold, we accept that the

input feature affects output accuracy.
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Table 2.1: Summary of the AxProf benchmarks. Unless specified otherwise, n is the size of
the dataset.

Benchmark Parameters (Informal) accuracy spec

Locality Sensitive k: hashes per table P [neighbor] = 1− (1− pk)l

Hashing l: number of hash tables p depends on similarity

Bloom Filter
p: max false positive probability P [false positive] ≤ p
c: capacity If number of inserted elements < c

Count-Min Sketch
ε: error factor

P [error < nε] > 1− δ
δ: error probability

HyperLogLog k: Number of hashes P [error ≤ 1.04/sqrt(k)] >= 0.65

Reservoir Sampling s: reservoir size P [in sample] = min(s/n, 1)

c: sampling rate P [‖error‖F < C] > 1− δ
Matrix Multiply A: m× n matrix C = η/c||A||F ||B||F

B: n× p matrix where η = 1 +
√
−8 log(δ)

Chisel/blackscholes r: reliability factor P [exact = approx] > r

r: reliability factor
Chisel/sor m, n: matrix dimensions P [exact = approx] > r

i: iterations

Chisel/scale
s: scale factor E[PSNR(d, d′)] ≥ −10 · log10(1− r)
r: reliability factor

2.5 METHODOLOGY

Table 2.1 presents a summary of the benchmarks we analyzed with AxProf. We chose

these benchmarks to represent common randomized approximate components of data-centric

applications as well as computations running on unreliable hardware. The table lists the

benchmark parameters that can be controlled (Column 2) and the informal accuracy spec-

ifications (Column 3). Table 2.2 presents the accuracy specifications for each benchmark

specified using AxProf’s specification language.

2.5.1 Benchmark Details

Locality Sensitive Hashing (LSH). We describe this algorithm in Section 2.1.

Bloom Filter. Bloom Filter [19] checks if an item was present in a data stream. It starts

with an all-zero bit filter of length m. For each data item, it calculates k different m-bit

hash functions and sets the corresponding bits. To check if an item q was in the stream, the

algorithm checks that each bit corresponding to the k hashes of q is 1. The user calculates

optimal values for k and m from the desired capacity c and a maximum false positive rate
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Table 2.2: Accuracy specifications provided to the checker generator

Benchmark Accuracy specification in the AxProf language

Locality Sensitive
Hashing

forall i in indices(Input), q in indices(Input) :

Probability over runs [ [q,i] in Output ]

== L1HashEqProb(Input[i],Input[q],k,l)

Bloom Filter Probability over i in excluded(Config ,Input)

[ i in Output ] < p

Count-Min Sketch
Probability over i in uniques(Input)

[ (count(i,Input) - Output[i])

< ε*|Input| ] > 1 - δ

HyperLogLog
Probability over inputs

[ abs(datasize -Output)

< (datasize *1.04)/sqrt (2^k) ] >= 0.65

Reservoir Sampling
forall i in Input :

Probability over runs [ i in Output ]

== min(ressize/datasize ,1)

Matrix Multiply
Probability over runs

[ Output < (η(δ)/samplingFactor)
*( frobNorm(Input [0])*frobNorm(Input [1])) ] > δ

Chisel/blackscholes Probability over runs

[ Output == oracle(Config ,Input) ] > r

Chisel/sor Probability over runs

[ Output == oracle(Config ,Input) ] > r

Chisel/scale Expectation over runs

[ PSNR(Input , Output) ] >= -10*log10(1-r)

p. In the specification in Table 2.2, excluded calculates the set of items in the input that

were not inserted into the filter.

Count-Min Sketch. Count-Min Sketch [17] counts the frequency of items in a dataset.

The algorithm maintains a set of uniform hash functions whose range is divided into a set

of bins. For every item in the dataset, it calculates the hash functions and increments the

counters in the mapped bins. The estimated frequency of an item is the minimum of all the

counters in the corresponding bins. The accuracy can be improved by increasing the number

of hash functions and bins. In the specification in Table 2.2, uniques calculates the set of

unique items in the input, as some items appear multiple times.

HyperLogLog. HyperLogLog [15] is an algorithm for calculating the number of distinct

elements in a large dataset. For each element in a dataset, the algorithm calculates k hash
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values. It uses the hash values with the maximum number of leading zeros to estimate the

cardinality of the dataset. The user can reduce the variance of the result by increasing k.

Reservoir Sampling. Reservoir Sampling [18] uniformly samples a data stream of un-

known length. For a reservoir of size s, the first s elements are directly inserted into the

reservoir. Afterwards, for the ith element to be inserted, it chooses an integer p uniformly

at random from [1, i]. If p ≤ s then it replaces the item currently in the pth position in the

reservoir with the new item.

Randomized Matrix Multiplication. Randomized matrix multiplication methods [20]

reduce computation time and resource consumption of matrix multiplication by randomly

sampling the matrices. The authors provide guarantees for accuracy as an upper bound on

the Frobenius norm of the errors. Users can control the error by changing the sampling rate.

Chisel kernels. Chisel [36] is a reliability aware optimization framework for programs

that run on approximate hardware. We examine three kernels from Chisel’s benchmarks:

1) scale scales an image by a specified scale factor, 2) sor performs the successive over-

relaxation operation for a given matrix, and 3) blackscholes computes the price of a stock

portfolio using the Black-Scholes formula. For blackscholes and sor, Chisel provides bounds

on the probability that the output differs from the exact value. For scale, Chisel provides

the expression for the expected PSNR value between the exact and approximate results.

2.5.2 Benchmark Implementations

For each algorithm benchmark, we selected two implementations from GitHub. We pre-

ferred implementations in Java, Python, or C/C++ due to our familiarity with those lan-

guages. We took several factors into account when selecting implementations to profile,

such as the number of stars on GitHub and repository activity. All the selected implemen-

tations appear among the top ten search results in GitHub for the name of the algorithm.

For the Chisel kernel benchmarks, we used implementations derived from those used in the

evaluation of Chisel.

2.5.3 Experimental Setup

Parameters and their ranges. The parameter value choices offer a trade-off between

profiling time and the confidence in the benchmark output’s correctness. We chose param-
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Table 2.3: Controlled parameters

Benchmark Parameters Range

Locality Sensitive
Hashing

Hash functions per table 2, 4, 8
Number of hash tables 2, 4, 8, 16
Input size (performance) 1000, 2000, . . . , 10000
Input size (accuracy) 100

Bloom Filter

Max. false positive prob. 0.1, 0.01, 0.001
Load (fraction of capacity) 0.2, 0.4, 0.6, 0.8
Capacity (performance) 20000, 40000, . . . , 100000
Capacity (accuracy) 200, 400, . . . , 1000

Count-Min Sketch
ε : error factor 0.1, 0.01, 0.001
δ : error probability 0.2, 0.1, 0.05
Input size 10000, 20000, . . . , 100000

HyperLogLog
Number of hash function 28, 210, 212, 214

Unique items in input 10000, 20000, . . . , 100000

Reservoir Sampling
Size of reservoir 10000, 20000, . . . , 100000
Input: size 10000, 20000, . . . , 100000

Matrix Multiply
Size of matrices 20× 20 - 200× 200
Sampling rate 0.2, 0.4, 0.8

Chisel/blackscholes Load error rate 0.000048, 0.00024, 0.24

Chisel/sor
Size of matrices 4× 4 - 50× 50
Iterations 1, 5, 10, 20
Omega factor 0.1, 0.5, 0.75

Chisel/scale
Input image 5 images
Scale factor 1, 2, 4, 8

eters across their valid range. For each parameter in the time or memory specifications, we

used at least 3 values across the range (for curve fitting). Table 2.3 presents the parameter

ranges we used in our experiments. Column 2 shows the parameter names, and Column 3

shows the range of each parameter.

Statistical tests. For statistical tests, we used the standard significance level α = 0.05

and statistical power 1 − β = 0.8 when calculating the number of executions. To get the

number of executions for per-execution checkers, we used SPRT with a minimum acceptable

probability of success of 0.999 and a maximum probability of failure of 0.99. Based on these

values, AxProf calculated that 320 executions were sufficient. For the specifications requiring

the binomial test, we chose a probability deviation factor δ = 0.1. For those that require

the t-test, we chose an effect size d = 0.2. For both of these, AxProf calculated (using the

formulae from Section 2.3.3) that 190-200 executions were sufficient. For identifying resource

model discrepancies, we used an R2 threshold of 0.9.
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Table 2.4: Summary of AxProf profiling results

Benchmark Implementation Accuracy Time Memory

Locality Sensitive
Hashing

TarsosLSH [102] WARN (12/12) 3 3
java-LSH [112] WARN (4/4) 3 N.A.

Bloom Filter
libbf [113] 3 WARN 3
BloomFilter [114] 3 WARN 3

Count-Min Sketch
alabid [115] WARN (90/90) 3 3
awnystrom [116] WARN (81/90) 3 WARN*

HyperLogLog
yahoo [117] 3 WARN WARN
ekzhu [118] WARN* (2/40) 3 3

Reservoir Sampling
yahoo [117] 3 3 WARN
sample [119] 3 WARN* 3

Matrix Multiply
RandMatrix [120] WARN (30/243) 3 3
mscs [121] 3 3 3

Chisel/blackscholes Chisel [122] 3 3 3

Chisel/sor Chisel [122] 3 3 3

Chisel/scale Chisel [122] 3 3 3

Environment. We ran experiments on a machine with a Xeon E5-1650 v4 CPU, 32 GB

RAM, and Ubuntu 16.04. For time profiling, we used a real-time timer around the relevant

functions. For memory, we used serialization in Java and Python, and the time Linux

utility for C/C++ programs. For fitting the resource consumption models, we used the

scipy.optimize module of SciPy [111].

2.6 EVALUATION

2.6.1 Effectiveness of AxProf in Profiling Accuracy

Table 2.4 presents a summary of our findings using AxProf. Columns 1-2 present the

benchmark and the profiled implementation. Column 3 presents the results for accuracy

analysis of each implementation. Columns 4 and 5 present the results for analysis of time

and memory usage. In each column, a 3 represents that AxProf did not find any issues,

while WARN(X/Y) represents cases where AxProf issued a warning in X out of Y tested

benchmark configurations. A * indicates that we determined a warning to be a false warning.

For accuracy analysis, we tested each configuration independently. For time and memory

analysis, data from all configurations is part of a single regression model.

Out of the 15 implementations that we profiled, 4 implementations passed all tests for
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compliance with accuracy, time and memory specifications. AxProf detected conditions

that trigger warnings in the remaining 11 implementations. We manually analyzed the

implementations that caused warnings. We found two causes for the 9 real warnings:

• Errors in implementations: Some implementations used hash functions with errors that

caused higher than expected accuracy loss. One implementation had a misconfigured

random number generator that affected sampling.

• Performance optimizations: Some implementations added performance optimizations

that caused unexpected time or memory usage.

We observed false warnings (WARN*) in the time specification check for sample and the

memory check for awnystrom due to noise in the measurements. For HyperLogLog, when the

input-set cardinality is very low and close to a predefined threshold, the error in the accuracy

estimate provided by the specification is high. This led to warnings for two configurations

of ekzhu (yahoo avoided this issue by using a polyalgorithm [123]).

2.6.2 Errors in Implementations

LSH: TarsosLSH. We discuss this benchmark in detail in Section 2.1.

LSH: java-LSH. This is a MinHash-LSH implementation in Java for the Jaccard similar-

ity metric [124]. We observed that sets were being considered similar to the query set more

often than expected. The implementation used the simple hash function h(x) = (a ∗ x + b)

mod m. This hash function is usable only when m is prime. However, the implementation

often chose a composite value for m. We fixed the hash by setting m to a fixed, large prime.

After this fix, the observed results matched the expected values.

Count-Min Sketch: awnystrom, alabid. Count-Min Sketch calculates multiple hashes

chosen randomly from a family of hash functions. The output of the hash functions must

be pairwise independent with respect to the hashed values. That is, if h is a function chosen

uniformly at random from the hash family, for two values x and y, h(x) and h(y) must be

uniformly distributed and pairwise independent.

AxProf detected that the observed error rate was higher than expected for many con-

figurations in both implementations. By manual inspection, we identified that the buggy

implementations used hash functions that do not satisfy the pairwise independence property.

After replacing the hash functions, the error rate reduced to the expected level.
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Matrix Multiplication: RandMatrix. This method subsamples the rows and columns

of the matrices to reduce matrix multiplication time. The algorithm [20] provides an opti-

mum sampling method that was not implemented correctly in the implementation, leading

to incorrect results.

Developer-provided tests. In all cases, tests written by the developers failed to catch

the bugs identified through AxProf. We observed three main reasons: 1) unit tests only

partially checked the algorithm functionality (java-LSH ), 2) tests used fixed inputs that

did not trigger bugs (alabid, awnystrom, RandMatrix ), and 3) the test framework itself was

buggy (TarsosLSH ).

2.6.3 Performance Optimizations

We also observed situations where warnings were issued by AxProf due to performance op-

timizations in implementations that were causing unexpectedly low resource usage. For both

Bloom Filter implementations, instead of checking the entire filter to search for a 0 value,

the implementations could return immediately when the first 0 was found. This property

is not encoded in the basic algorithm accuracy specification. For the yahoo HyperLogLog

implementation, AxProf was unable to model the runtime of the algorithm against the input

size due to the use of a polyalgorithm [123]. For the yahoo Reservoir Sampling implemen-

tation, the memory usage was unexpectedly low due to the implementation incrementally

allocating memory as opposed to doing so all at once.

2.6.4 Effectiveness of Accuracy Profiling

We analyzed the accuracy bugs that we found and confirmed that they did not affect the

resource usage of the implementation. Table 2.4 shows how accuracy bugs rarely correlate

with deviations in resource consumption. These results show the importance of augmenting

regular algorithmic profiling techniques with accuracy analysis.

2.6.5 Effectiveness of Input Feature Selection

We studied four input features from AxProf’s input generators and their effect on the

accuracy of the algorithm benchmarks. Table 2.5 shows the results of the analysis. We

only examined the correct implementations of the programs. We analyzed the benchmarks

manually to confirm the results of the MIC-based approach (Section 2.4). Columns 2-4
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Table 2.5: Input feature impact on accuracy

Benchmark Order Frequency Distance Sparsity

Locality Sensitive Hashing (7, 7) (7, 7) (3, 3) -
Bloom Filter (7, 7) (3, 3) (7, 7) -
Count-Min Sketch (7, 7) (3, 3) (7, 7) -
HyperLogLog (7, 7) (7, 7) (3, 7) -
Matrix Multiply (3, 3) - (3, 3) (3, 3)

correspond to different input features. Each column has the format (automatic/manual).

A 3 indicates that AxProf’s automatic and our manual analyses, respectively, show that

the input feature affects accuracy. For Reservoir Sampling, we were unable to derive an

accuracy measurement due to the nature of the specification. For the Chisel benchmarks,

the accuracy depends only on the underlying hardware, therefore input features we changed

did not have any impact. AxProf’s automatic MIC-based approach correctly identified most

input features that were relevant to the algorithm’s output accuracy.

2.7 RELATED WORK

Algorithmic profiling. Researchers have proposed several approaches to model perfor-

mance of programs as a function of workload size [96, 97, 98]. Algorithmic profiling [98] is a

framework that focuses on automating such profiling tasks by detecting algorithms and their

inputs. COZ [125] is a causal profiler that estimates the effect of potential optimization of

subcomputations on the performance of the whole program. Researchers proposed similar

techniques for analyzing memory and recursive data structures, e.g., [126, 127]. AxProf’s

accuracy analysis is complementary to these existing approaches. Statistical debugging and

profiling tools, e.g., [128, 129, 130] use statistical models of programs to predict and isolate

bugs. This line of research is conceptually orthogonal to ours.

Analysis of accuracy. Researchers have explored various dynamic approaches [37, 49,

50, 61, 62] to empirically analyze the impact on accuracy from transformations that change

program semantics. In contrast, AxProf uses theoretical specifications of uncertain computa-

tions and checks for discrepancies in their implementations. MayHap [91] converts program

code to a Bayesian network and uses Chernoff bounds to check probabilistic assertions over

a set of executions. In contrast, AxProf operates on a program as a black-box system, sup-

ports a richer set of predicates including inputs and items, and automatically selects the

appropriate test. Ceramist [131] is a Coq framework for verifying accuracy specifications of

theoretical approximate randomized algorithms. AxProf uses statistical tests to ensure that
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implementations of the algorithms satisfy the accuracy specifications.

Statistical model checking. Statistical model checking [107, 132, 133] is a general ap-

proach for verifying properties of black-box stochastic systems using statistical hypothesis

testing. For instance, the framework of Sen et al. [132] expresses properties in Continuous

Stochastic Logic (CSL) and samples the outputs from the tested system. CSL’s probability

predicate, like our Probability over runs predicate, estimates the probability that the

system satisfies a specified logical property. However, expressing the predicates over inputs

and items would be significantly more complicated in CSL. Additionally, it does not support

expectation predicates or complex data structures, like lists or matrices. In addition to sup-

porting these features, AxProf automatically generates code for collecting and aggregating

data, thus giving a developer an intuitive tool to simultaneously explore various aspects of

an implementation’s accuracy and resource consumption.

Applications of AxProf. Fernando et al. [134] used autotuning to successfully relax con-

servative approximate algorithm parameters for restricted sets of inputs. We used AxProf

within the autotuning process to ensure that candidate relaxed parameters still satisfied the

algorithm’s accuracy specification. Aloe (Chapter 4) statically analyzes computations run-

ning on unreliable hardware that attempt to recover from errors using potentially imperfect

checker functions. Some imperfect checkers rely on assumptions about the computation’s

input in order to effectively detect errors [74, 135]. If a new set of inputs potentially violates

these assumptions, AxProf can statistically check the protected computation to determine

if the current imperfect checker can be used, or if a new checker is required.
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Chapter 3: GAS

Autonomous vehicles, such as self driving cars, unmanned aircraft, and utility vehicles,

are increasingly common. They navigate by perceiving the vehicle’s state (position, heading,

etc.), making a control decision based on this perceived state, and moving accordingly. To

preserve life and property, developers specify safety properties that the vehicle must sat-

isfy in certain scenarios. However, 1) many sensors have a nondeterministic output (e.g.,

GPS and LIDAR) and 2) the vehicle’s software processes sensor values or makes decisions

using complex, possibly imperfect components such as neural networks and lookup tables.

Given this uncertainty in the output of the perception and control systems, proving that an

autonomous vehicle will never violate safety properties in a scenario is impossible or imprac-

tical. Developers instead focus on proving that the vehicles will satisfy the safety property

with high probability, using probabilistic and statistical techniques.

Monte Carlo Simulation (MCS) is perhaps the most used method for checking safety

properties during development of vehicle systems. Simulations are capable of detecting

software faults that would otherwise require much more expensive formal verification or real-

world testing and are commonly used in industry for testing autonomous vehicles [136, 137].

However, using MCS still requires a large number of resource-intensive system simulations

in order to get a sufficiently accurate estimate of the probability that the vehicle will violate

a safety property [136, 138, 139]. This is particularly worrisome as the vehicle system

requires constant retesting as it undergoes changes during its development. Even after initial

development has ceased and the vehicle is deployed, developers may still make changes to it

to add new capabilities and improve navigation and safety in real-world environments.

Surrogate Models aim to provide an accurate and faster replacement for the original costly

model of many engineering systems. These models can be created using techniques such

as abstraction refinement [138], machine learning [140], or Generalized Polynomial Chaos

(GPC) [141]. For instance, previous research has created GPC surrogate models for the

equations of vehicle dynamics [142]. However, the presence of complex perception and

control components (which often dominate the original model’s execution time) hinders

the application of existing surrogate model construction techniques to creating surrogate

models of the complete vehicle system. For example, the output of a neural network which

processes a camera image to perceive the vehicle’s state is not only affected by the ground

truth state, but also multiple environmental parameters (e.g., weather, lighting, nearby

objects, etc.) which may affect the neural network’s output in a nondeterministic manner.

Existing techniques struggle to capture this complicated relationship between environmental
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parameters and the neural network output.

Our work. We present GAS (GPC for Autonomous Vehicle Systems), the first approach

for creating surrogate models of complete autonomous vehicle systems which compose com-

plex perception and/or control components with vehicle dynamics. The resulting surrogate

models are close approximations of the original vehicle models. They provide a faster alter-

native to MCS when developers experiment with system components, or tune various system

parameters during the design and testing stages of vehicle development.

GAS first creates a perception model to calculate the distribution of error in the output

of the perception system for any ground truth state. GAS directly samples this error distri-

bution, reducing the need for costly experimentation with environmental parameters, image

generation, and neural networks. Second, GAS constructs a surrogate model of the complete

vehicle system (perception, control, and dynamics). GAS can create several types of surro-

gate models, such as polynomial models via regression, or neural network models. However,

we observed that GAS produces the most consistently precise surrogate models using GPC.

GAS also supports systems that contain categorical variables (e.g., in the control system)

using an ancillary model, overcoming a limitation of GPC. Lastly, because GAS’s perception

model is created independently of downstream components, it can be reused when designers

alter vehicle control and dynamics properties of the vehicle, potentially saving a significant

amount of time. We can use GAS instead of the original vehicle model to calculate any prop-

erty of the vehicle system which can be calculated by analyzing the evolution of the vehicle

state distribution over time. We demonstrate the advantages of using the GAS-generated

surrogate model to calculate two such properties:

First, we use the surrogate model to estimate the probability that the vehicle will reach

an unsafe state over time in five realistic scenarios. These scenarios model systems used

in crop management vehicles, self driving cars, and unmanned aircraft. Each system uses

a complex perception component (ResNet-18 or LaneNet) or a complex control component

(neural network controllers or lookup tables). We show that the probability of reaching

an unsafe state calculated by the surrogate model closely matches that calculated via the

original model for 97% or more of time steps, while being 3.7× faster on average (minimum

2.1×). We also investigate how various hyperparameters of the perception model affect

GAS’s overall accuracy and speedup.

Second, we use the surrogate model for global sensitivity analysis of the vehicle system to

initial state perturbations for the same scenarios by calculating Sobol sensitivity indices [143]

1.4× faster on average (minimum 1.3×) with an average error of 0.0004 (maximum 0.06).
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(a) Real-life vehicle (b) Sim: overhead view (c) Sim: front camera

Figure 3.1: Crop-Monitor vehicle scenario

Figure 3.2: Crop-Monitor vehicle model: original (top) and abstract (bottom). GAS replaces
the outlined section with a surrogate model.

3.1 EXAMPLE

Consider an autonomous vehicle which travels between two rows of crops in order to

monitor crop growth and detect weeds. Farmers use this information to adjust fertilizer and

herbicide levels for each location. We have adapted this scenario from [144]. Figure 3.1

illustrates the scenario. The desired path is shown in red.

The top half of Figure 3.2 shows a block diagram representation of the system model

MV responsible for driving the vehicle between two rows of crops. First, a camera captures

the area in front of the vehicle. The image depends on the current vehicle state as well as

environmental conditions. Environmental variables include crop types, crop growth stage,

crop model, and lighting conditions. The neural network analyzes the image to perceive the

current vehicle state. It is a regression neural network, producing a single state prediction.

The relevant state variables in this scenario are:

• The heading angle h, which is the angle between the vehicle’s current heading and

the imaginary center line between the two rows of crops. h can take values in [−π, π]
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radians, with 0 corresponding to the direction of the center line.

• The distance d of the vehicle from the center line. d can take values in [−0.38, 0.38]

meters, with 0 corresponding to the center line.

The vehicle state space is therefore DS = [−π, π]h × [−0.38, 0.38]d.

As neural networks are inherently approximate, the state perceived by the neural network

may not be the same as the ground truth. The vehicle uses this approximate heading and

distance reading to calculate a steering angle in order to keep the vehicle on the center line.

Finally, the vehicle moves according to its constant speed and commanded steering angle.

Unsafe states. We wish to avoid two undesirable outcomes: 1) if |d| > 0.228m, the

vehicle will hit the crop stems, and 2) if |h| > π/6, the neural network output becomes highly

inaccurate and recovery may be impossible. To avoid these outcomes, we want the vehicle to

remain in the safe region, defined as all states within Dsafe
S = [−π/6, π/6]h× [−0.228, 0.228]d.

Because the vehicle makes steering decisions based on approximate data, we cannot be

certain that the vehicle will remain safe. Instead, we want to calculate the probability that

the vehicle will remain safe over time.

Monte Carlo Simulation. In Monte Carlo Simulation (MCS), we simulate the vehicle’s

movement a large number of times and count the number of times the vehicle reaches an

unsafe state. We use the Gazebo simulator [145] to precisely control the simulation.

We simulate 1,000 samples over 100 time steps of 0.1 seconds each. We randomly sample

environmental conditions from an environment distribution DE that contains two types of

crops, four crop growth stages, crop model variations, and a range of lighting conditions. We

also choose the initial vehicle state from a normal distribution within Dsafe
S . For each sample

at each time step, we invoke MV , which 1) captures an image from an expensive Gazebo

simulation in the current vehicle state and environment, 2) passes the image through the

neural network to get the approximate perceived state, 3) calculates a steering angle based

on the perceived state, and 4) calculates the position of the vehicle after one time step using

the actual state and steering angle. At each time step, we calculate the fraction of samples

that are still in a safe state.

3.1.1 GAS: Using Generalized Polynomial Chaos

We present GAS, a novel approach for creating surrogate models of complex vehicle sys-

tems. Here, we show an example construction using Generalized Polynomial Chaos (GPC).
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Figure 3.3: Error distribution of the ResNet-18 neural network for the validation set of
real-world images.

While previous research (e.g., [142]) has explored using GPC to create models of vehicle

dynamics, this is insufficient in our scenario as the process of capturing and processing the

image contributes to over 99% of the simulation time. GAS aims to instead use GPC to

create a surrogate for the entire vehicle model: perception, control, and dynamics.

Perception model construction. The output of the vehicle’s perception neural network

depends on the image captured by the front camera. This image depends not only on

the vehicle’s state, but also environmental parameters (e.g., lighting, crop type, crop age,

etc.). Given a distribution of environmental parameters, there is a corresponding output

distribution of the perception neural network for each ground truth state. Figure 3.3 shows

the error distribution of the ResNet-18 networks used by this vehicle on the original validation

dataset of real-world images collected by the vehicle’s camera in a cornfield. The histogram

shows the actual error frequency, while the line shows the fitted normal distribution. The

distribution closely matches the histogram, indicating that the error of the neural network

is normally distributed.

GAS must sample this output distribution when creating the GPC model. However,

1) the environmental parameters have a smaller effect on the perceived state as compared

to the vehicle’s actual state, and 2) directly using the numerous environmental parameters

increases the input space over which GAS must construct the GPC model, which increases

model construction time. GAS therefore abstracts away the actual environmental parameters

by creating a perception model. GAS trains the perception model by selecting an 11 × 11
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Figure 3.4: Comparison of neural network output distribution (dashed red ellipse) to dis-
tribution predicted by perception model (solid blue ellipse). Each box represents a distinct
ground truth state used to construct the perception model. The X and Y-Axes vary the
ground truth heading and distance, respectively.

grid of ground truth states in Dsafe
S . At each grid point (h, d), it randomly samples multiple

images from DE, and records the neural network outputs. It calculates the mean µ(h, d)

and covariance σ2(h, d) of the outputs at each state. GAS trains a degree 4 polynomial

regression model Mper to predict each component of µ(h, d) and σ2(h, d) at any safe state.

Figure 3.4 visually compares the neural network output distribution to the distribution

predicted by Mper for images captured within Gazebo. The red dashed ellipse and the blue

solid ellipse show the 3σ confidence boundaries for the neural network output distribution

and the distribution predicted by the perception model, respectively. The two distributions

closely match, especially when the vehicle is near the center and pointing straight ahead.

GPC surrogate model construction. Next, GAS creates an abstract vehicle model M ′
V ,

shown in the bottom half of Figure 3.2. M ′
V first uses Mper to obtain the neural network

output distribution in the current state. Second, it transforms a sample from a 2D standard

normal distribution into a sample from this output distribution using matrix operations.

The rest of the vehicle model uses this transformed sample as the perceived state. GAS

now uses GPC to create a polynomial model of the complete system (outlined section of

Figure 3.2). This model MGPC is a 4th degree polynomial over 4 variables (2 state variables

and a 2D normal distribution sample). GAS replaces MV in the MCS procedure outlined

above with MGPC and uses it to estimate the state distribution of the vehicle over time.

GAS also increases the number of samples for distribution estimation to 10,000 for MGPC in

order to take advantage of its speed and decrease sampling error.
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(a) Final state distributions: heading (left)
and distance (right)

(b) Wasserstein metric
value over time

(c) Safe state proba-
bility over time

Figure 3.5: Visual comparison of GAS and MCS results for Crop-Monitor

3.1.2 Results

Accuracy. Figure 3.5a shows a comparison of the heading and distance distributions after

100 time steps. The X Axis shows the variable value and the Y Axis shows the cumulative

probability. The blue solid and red dashed plots show the distributions estimated using GAS

and MCS, respectively. We compare the GAS and MCS distributions using the Kolmogorov-

Smirnov (KS) statistic and the Wasserstein metric. Figure 3.5b shows how the Wasserstein

metric evolves over time. The X Axis shows time steps and the Y Axis shows the Wasser-

stein metric. The low Wasserstein metric value indicates good correlation between the two

distributions at all times. The KS statistic also remains below 0.14. Figure 3.5c shows the

probability of remaining in a safe state over time. The X Axis shows time steps and the

Y Axis shows the probability of remaining safe. The blue solid and red dashed plots show

the probabilities calculated using GAS and MCS, respectively. The shaded regions show

the 95% bootstrap confidence interval. Around each plot, the bootstrap confidence interval

indicates the variation that can occur as a result of sampling error. As GAS evaluates MGPC

for 10× more samples than MV , its confidence interval is smaller. We use the t-test to check

if the safe state probabilities are similar: it passes for 99 of 100 time steps, indicating high

similarity between the estimated probabilities.

Time. GAS is 2.3× faster than MCS on our hardware. MCS using MV required 19.5 hours.

Gathering the training data for Mper required 8.5 hours. The time required for training Mper,

constructing MGPC, and using MGPC was negligible in comparison (< 1 minute). Increasing

the number of samples or the number of time steps would further increase the gap between

the two methods, since the time required to construct the perception model is fixed.
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3.2 BACKGROUND

We present key definitions pertaining to the construction of GPC models. Dedicated

books (e.g., [141]) provide more detailed descriptions.

Orthogonal polynomials. Assume X is a continuous random variable with support SX

and probability density pX : SX → R+. Let Ψ = {Ψn|n ∈ N} be a set of polynomials, where

Ψn is an nth degree polynomial. Then Ψ is a set of orthogonal polynomials for X if:

n 6= m⇒
∫
SX

Ψn(x)Ψm(x)pX(x)dx = 0 (3.1)

The orthogonal polynomial Ψn has n distinct roots within SX . Orthogonal polynomials

exist for a wide range of probability distributions. For example, the Legendre, Hermite,

Jacobi, and Laguerre polynomials are orthogonal over the uniform, normal, beta, and gamma

distributions, respectively.

Orthogonal polynomial projection (GPC). Let f : SX → R. Then the N th order

orthogonal polynomial projection of f , written as fN , with respect to a set of orthogonal

polynomials Ψ, is:

fN =
N∑
i=0

ciΨi where ci =

∫
SX
f(x)Ψi(x)pX(x)dx∫
SX

Ψ2
i (x)pX(x)dx

(3.2)

If f is a polynomial of degree at most N , then fN = f . Otherwise, fN is the optimal N th

degree polynomial approximation of f with respect to X, in the sense that it minimizes `2

error, which is calculated as:

`2 error =

∫
SX

(f(x)− fN(x))2 pX(x)dx (3.3)

As N →∞, the `2 error approaches 0, i.e., we can construct arbitrarily good approximations

of f . fN is called the generalized polynomial chaos (GPC) approximation of order N .
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Lagrange basis polynomials. Given N points (xi, yi), 1 ≤ i ≤ N , where all xi are

distinct, Equation 3.4 shows the Lagrange basis polynomials Li for each i.

Li(x) =
∏

1≤j≤N
j 6=i

x− xj
xi − xj

(3.4)

Gaussian quadrature. To use Equation 3.2, we must perform multiple integrations to

calculate the coefficients ci (i ∈ {0 . . . N}). For any non-trivial function g, we must use

numerical integration. We can approximate the integral as follows:

∫
SX

g(x)pX(x)dx ≈
N∑
i=1

wig(xi) where wi =

∫
SX

Li(x)pX(x)dx (3.5)

We choose wi and xi so as to minimize integration error. In Gaussian quadrature, we choose

xi to be the N roots of ΨN , the N th order orthogonal polynomial with respect to X. We

calculate the corresponding weights using the Lagrange basis polynomials Li (Equation 3.4)

passing through xj ∀j 6= i.

Multivariate GPC. GPC can be easily extended to the multivariate case, as long as all

all random variables are independent. Let X = (X1, . . . , Xd) be the d independent random

variables (not necessarily following the same distribution) and let f be a function over X.

The orthogonal polynomials Ψi for X are simply the products of the orthogonal polynomials

Ψi1 , . . . ,Ψid for X1, . . . , Xd respectively. The GPC approximation closely resembles the one

for the univariate case:

fN =
∑

i

ciΨi where ci =

∫
SX
f(x)Ψi(x)pX(x)dx∫

SX
Ψi

2(x)pX(x)dx
(3.6)

We can calculate ci using a variation of Equation 3.5 in which we calculate the sum over all

dimensions of i.

Global sensitivity (Sobol) indices. Sobol indices [143] decompose the variance of the

model output over the entire input distribution into portions that depend on subsets of the

input variables Xi. The first order sensitivity indices show the contribution of a single input

variable to the output variance. For a variable Xi, the sensitivity index is Si = Vi/V . Here,
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V = VarX(f(x)) is the total variance and

Vi = VarXi(EX¬i(f(x)|Xi = xi)) (3.7)

where X¬i = {X1, . . . , Xd} \ {Xi}

We can evaluate Equation 3.7 analytically when f is a polynomial (such as those generated

via GPC) and when it is possible to calculate the moments of each independent component

of X analytically. For more complex functions and distributions, it becomes necessary to

estimate Equation 3.7 empirically using Monte Carlo estimators [143, Equation 6].

3.3 GAS APPROACH

We present the GAS approach for creating a surrogate model of complex autonomous

vehicle systems. GAS consists of three high level steps:

1. Create a deterministic complete vehicle model.

2. Train a perception model and use it to replace the regression neural network used for

state perception in the vehicle model (Algorithms 3.1-3.2).

3. Construct a surrogate model for the complete vehicle model (Algorithm 3.3).

GAS automates almost the entire process of constructing and using the surrogate model. The

user provides the environment distribution (DE), the distribution of other relevant random

variables (DR), the initial state distribution (D0
S), and other simulation parameters as inputs

to GAS.

3.3.1 Creating a Deterministic Vehicle Model

First, we represent the complete vehicle model as a deterministic function of independent

random variables, MV : DS × DE × DR → DS. S ∈ DS is a vector of state variables

(e.g., position and rotation), E ∈ DE is a vector of environment-related random variables

that affect the neural network (e.g., weather and lighting conditions that affect the image

processed by the neural network), and R ∈ DR is a vector of random variables that do not

affect the neural network, but affect other parts of MV . Making MV deterministic allows us

to explicitly sample the output distribution of MV for any given state. We remove any input

variable dependencies by isolating independent components of input variables as necessary.
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3.3.2 Replacing the Perception System

The output of regression neural networks which use camera images to perceive the vehicle’s

state is affected by environmental factors unrelated to the vehicle’s state. For a given ground

truth state, such perception systems produce a distribution of possible perceived states.

To enable faster and systematic sampling of this output distribution, GAS replaces the

perception system with a perception model prior to constructing the vehicle surrogate model.

Algorithm 3.1 Training the perception model

Input G: set of ground truth states; DE: distribution of environment variables; Ni:
number of images to capture for each g ∈ G
Returns Mper : trained perception model; dper : degree of perception model

1: function TrainPerceptionModel(G,DE, Ni)
2: TrainTestData ← { }
3: for g ∈ G do
4: Ig ← [ ]
5: for i from 1 to Ni do
6: E ∼ DE
7: Img ← CaptureImage(g, E)
8: Ig ← Ig :: Img

9: Og ← NeuralNetwork(Ig)
10: µg ←Mean(Og)
11: σ2

g ← Covariance(Og)
12: TrainTestData ← TrainTestData[g 7→ (µg, σ

2
g)]

13: Mper , dper ← TrainPolynomialRegressionModel(TrainTestData)

Algorithm 3.1 shows how GAS creates the perception model Mper. GAS first chooses

a set of ground truth states G from the set of safe states Dsafe
S . For each ground truth

state g ∈ G, GAS 1) captures a list of images Ig in environments E sampled from the

environment distribution DE, 2) passes Ig through the perception neural network to obtain

a list of outputs Og, and 3) calculates the mean µg and covariance σ2
g of Og. GAS trains a

polynomial regression model Mper to predict the mean µS and covariance σ2
S of the output

distribution at any ground truth state S ∈ Dsafe
S . GAS also infers the optimal polynomial

degree dper to maximize accuracy while preventing overfitting.

We create an abstracted vehicle model M ′
V : DS × Rn × DR → DS (Algorithm 3.2) which

uses Mper instead of the neural network. For the input vehicle state S, M ′
V first calculates

the perception neural network output distribution. Specifically, GAS assumes that this

output distribution is N (µS, σS), where µS and σ2
S are the output distribution parameters

at S predicted using Mper. Instead of a sample from DE, M ′
V accepts a sample N from a

multivariate standard normal distribution N (0, 1). M ′
V transforms N to a sample OS from
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Algorithm 3.2 Abstracted vehicle model

Input S: initial state of vehicle; N : raw sample to be transformed into a neural network
output sample; R: other relevant random variables; Mper : trained perception model
Returns S ′: state of vehicle after one time step

1: function M ′
V (S,N,R,Mper)

2: µS, σ
2
S ←Mper(S)

3: OS ← SampleTransform(N,µS, σ
2
S)

4: S ′ ← VehicleControlAndDynamics(S,OS, R)

N (µS, σS). M ′
V uses this sample as the perceived state for the rest of the model consisting

of the vehicle’s control and dynamics systems.

GAS’s assumption that the perception neural network output is distributed according to

N (µS, σS) is based on the the output distribution for real-world images, which has a normal

distribution as shown in Figure 3.3. However, GAS is capable of using the same method for

other distributions if the parameters of the fitted distribution vary smoothly as the ground

truth changes.

3.3.3 GPC for the Complete Vehicle System

Algorithm 3.3 GPC surrogate model construction

Input Dsafe
S : distribution over Dsafe

S ; DR: distribution of other relevant random variables;
ogpc: order of GPC model; M ′

V : abstracted vehicle model
Returns MGPC : GAS surrogate model

1: function CreateGPCModel(Dsafe
S ,DR, ogpc,M

′
V )

2: J ← Join(Dsafe
S ,N (0, 1),DR)

3: Ψ← GenerateOrthogonalPolynomials(ogpc, J)
4: X,W ← GenerateQuadratureNodesAndWeights(ogpc, J)
5: Y ← [M ′

V (x) for x ∈ X]
6: MGPC ← QuadratureAndGPC(Ψ, X,W, Y )

Algorithm 3.3 shows how GAS constructs the GPC approximation of the abstracted vehicle

model M ′
V . GAS first constructs a joint distribution J over all input variables to M ′

V by

taking the product of a distribution for each input variable. GPC will produce a polynomial

approximation that minimizes `2 error weighted by the probability distribution of J . For the

state variables, GAS chooses a normal or truncated normal distribution Dsafe
S over the safe

state space Dsafe
S . For the raw sample that is transformed into a sample from the perception

system output distribution OS, GAS uses N (0, 1), as that ensures that the transformed

sample is indeed distributed according to OS. For the other relevant random variables,

40



GAS uses their actual distribution DR. Then, J = Dsafe
S × N (0, 1) × DR. GAS calculates

the basis polynomials Ψ which are orthogonal with respect to J . To efficiently calculate the

coefficients of the polynomials in Ψ, GAS uses Gaussian quadrature for numerical integration.

The surrogate model MGPC is the sum of the orthogonal basis polynomials multiplied by

these calculated coefficients, as per Equation 3.6.

Categorical state variables. Some vehicle models have categorical state variables. For

example, many control systems operate in distinct modes. The control system can switch

modes if certain conditions are met, and the current mode affects the control decisions.

In this case, the current mode is a categorical state variable. Unlike categorical variables,

polynomial inputs and outputs are continuous intervals. Therefore, we cannot use GPC for

predicting categorical variables, or accept a categorical variable as an input to the GPC

model. One option is to create a different type of surrogate model for such vehicle models.

However, GAS can still enable the use of GPC by using multiple GPC sub-models and using

a separate classifier for predicting output categorical variables. This procedure is known as

multi-element GPC (ME-GPC).

Consider a vehicle model MV whose state includes a categorical variable X with the

domain DX = {x1, . . . , xk}. GAS uses GPC to create a separate polynomial model for each

xi ∈ DX . The compound surrogate model chooses which of these sub-models to use based

on the current value of X. In this way, GAS calculates all output state variables except X.

For predicting X, GAS creates an ancillary classifier. GAS trains the ancillary classifier in

a similar manner as the perception model in Algorithm 3.1, with the main distinction being

that it creates a classification model as opposed to a regression model.

Alternate surrogate models. GAS’s perception model also enables the creation of al-

ternative complete vehicle system surrogate models. For example, we can use standard

polynomial regression instead of GPC, or use a neural network as a surrogate. GAS samples

the output of M ′
V for a large sample of inputs, and uses standard regression model training

techniques to train such alternative surrogate models.

3.3.4 Applications of the GAS Surrogate Model

Developers can use MGPC instead of MV to infer various properties about the vehicle

system, as long as those properties can be calculated by observing the evolution of the

vehicle’s state distribution over time. This chapter explores two such properties:
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Algorithm 3.4 Estimating the probability of remaining in a safe state over time

Input Ns: number of samples to use for distribution estimation; T : number of time
steps; D0

S: initial state distribution; DR: distribution of other relevant random variables;
Pred : safety predicate; MGPC : GPC surrogate model
Returns Psafe : probability that the vehicle is safe until each time step

1: function EstimateSafeProbability(Ns, T,D0
S,DR,Pred ,MGPC )

2: X ← [ ]; Psafe ← { }
3: for i from 1 to Ns do
4: x ∼ Join(D0

S,N (0, 1),DR)
5: X ← X :: x
6: for t from 1 to T do
7: X ′ ← [ ]
8: for x ∈ X do
9: S ′ ←MGPC (x)

10: if Safe(S ′,Pred) then
11: N ′ ∼ N (0, 1)
12: R′ ∼ DR
13: X ′ ← X ′ :: (S ′, N ′, R′)

14: X ← X ′

15: Psafe ← Psafe [t 7→ |X|/Ns]

Calculating probability of remaining in a safe state over time. GAS uses the

surrogate model to estimate the probability that the vehicle will remain in a safe state over

time (Algorithm 3.4). GAS creates initial state samples S using the initial state distribution

D0
S. At each time step, GAS chooses random samples N and R from N (0, 1) and DR

respectively. GAS evaluates the surrogate model on each joint sample to get the next state.

Finally, GAS calculates and logs the fraction of samples that did not violate the safety

predicate Pred .

Algorithm 3.5 Using estimators to calculate sensitivity indices

Input Ns: number of samples to use for sensitivity estimation; i: index of state variable
to calculate sensitivity for; DS: current state distribution; DR: distribution of other
relevant random variables; M : model (MGPC or M ′

V )
Returns Si: sensitivity index of selected state variable

1: function EstimateSensitivity(Ns, i,DS,DR,M)
2: Y0 ← [ ]; Y1 ← [ ]
3: for i from 1 to Ns do
4: x0, x1 ∼ Join(DS,N (0, 1),DR)
5: y0 ←M(x0); y1 ←M(x1[i 7→ x0[i]])
6: Y0 ← Y0 :: y0; Y1 ← Y1 :: y1

7: Si ← (Mean(Y0 ∗ Y1)−Mean(Y0)2)/Variance(Y0)
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Computing Sobol indices. GAS uses MGPC to calculate Sobol sensitivity indices in two

ways. In the analytical approach, GAS calculates sensitivity indices by first calculating con-

ditional expected values as polynomials and then calculating their variance (Equation 3.7).

In the empirical approach, GAS instead uses Monte Carlo estimators ([143, Equation 6] as

implemented in Algorithm 3.5).

While the analytical approach precisely calculates sensitivity indices, it is relatively slow,

as GAS must calculate expected values as a function of the variable whose sensitivity is

being calculated. The empirical approach becomes more accurate as the number of samples

increases. Due to the speed of evaluating MGPC, the empirical approach can still be faster

than the analytical approach while providing acceptable accuracy.

Rapid iteration. During development of an autonomous vehicle system, the vehicle model

can change rapidly as the perception neural network or vehicle control or dynamics parame-

ters are tweaked. GAS enables faster testing of these prototypes thanks to its compositional

approach. If the same perception system is used while changing the control and dynamics,

then GAS saves time by reusing the existing perception model. If the perception system is

changed, GAS must rerun Algorithms 3.1-3.3. If doing so is faster than using MCS, the time

saved still adds up with each iterative change. Even after initial development is complete,

GAS continues to provide speedups as new features are added in production.

3.3.5 Properties of the GAS Approach

Accuracy. Multiple GAS parameters affect the accuracy of the GPC model: the size of the

tensor grid |G|, the number of images taken for each grid point Ni, the degree of polynomial

regression used for the perception model, and the GPC order oGPC. Under certain conditions,

GAS converges in distribution to the exact solutions.

Lemma 3.1 (Perception model convergence). Assume that 1) for the given environment

distribution DE, the distribution of the outputs of a perception neural network N in any

ground truth state S is Gaussian over the perceived state, and 2) each component of the

distribution parameters (µS, σ
2
S) is an analytic function of S. Then, the output distribution

of the perception model Mper in any state approaches N’s output distribution at that state

as |G|, Ni, and dper increase.

Proof Sketch. Increasing |G| increases the number of ground truth states used to train the

perception model. IncreasingNi increases the accuracy of N’s output distribution parameters

calculated at each S. Since these distribution parameters are analytic functions of S, they
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can be calculated using a Taylor series over S. After increasing the number and accuracy of

training data points, the accuracy of the perception model can be arbitrarily increased by

increasing dper
3. QED.

We use standard statistical tests such as the Shapiro-Wilk test to check if N’s outputs

have a Gaussian distribution for the environment distribution DE used in Section 3.3.2. We

have observed this to be true in practice (Figure 3.3). We can also use a different base

distribution (and corresponding orthogonal polynomials for GPC) if it fits the data better

across the state space.

Practically, controlling the error of the perception model (or any approximation of a neural

network) is an open problem [146, 147]. Precise analytic calculation of the perception model

error is intractable, but we can empirically estimate the error.

Lemma 3.2 (GPC error bound). Assume the control system and vehicle dynamics in M ′
V

are differentiable. Then, the `2 error of the output of the GAS model MGPC with respect to

the output of M ′
V is bounded.

Proof Sketch. From [141, Theorem 3.6] and Ernst et al. [148], which state that the `2 error

of a GPC approximation is proportional to o−pGPC, where p is a positive value that depends

on the differentiability of the function being approximated. The process of generating a

neural network output sample through the perception model is a polynomial evaluation

followed by an affine transform; both are differentiable operations. The control system and

dynamics are differentiable by assumption. Finally, composing differentiable functions yields

a differentiable function. QED.

MGPC is the optimal polynomial model of M ′
V for any oGPC ([141, Equation 5.9]), in terms

of `2 error. In practice, control systems may not be differentiable everywhere (e.g., due to

mode switching), but the differentiability of vehicle dynamics, coupled with a short duration

time step, limits negative effects on accuracy.

Corollary 3.1 (GPC convergence). As oGPC →∞, the `2 error of GPC approaches 0, that

is, MGPC can be an arbitrarily close approximation of M ′
V .

Proof Sketch. From Lemma 3.2, the `2 error is proportional to o−pGPC, where p is positive.

Then, lim
oGPC→∞

o−pGPC = 0. QED.

Theorem 3.1 (GAS convergence). Assume that the distribution of the outputs of a per-

ception neural network N for any ground truth state in Dsafe
S is Gaussian. Then, the GAS

model MGPC converges in output distribution to the original vehicle model MV .
3Increasing dper without also increasing |G| leads to overfitting.

44



Table 3.1: GAS benchmarks

Benchmark Perception Control Replacement dims/r

Crop-Monitor ResNet-18×2 Skid-steer Perc→Polynomial regression 2/2
Car-Straight LaneNet Pure pursuit Perc→Polynomial regression 2/2
Car-Curved LaneNet Pure pursuit Perc→Polynomial regression 2/2
ACAS-Table Ground truth ACAS-Xu table Ctrl→Ancillary decision tree 4/0
ACAS-NN Ground truth ACAS-Xu NN Ctrl→Ancillary decision tree 4/0

Proof Sketch. Since we can construct an arbitrarily accurate perception model (Lemma 3.1),

we can use it to obtain accurate neural network output samples for any state in Dsafe
S . The

GPC model can be made an arbitrarily accurate approximation of M ′
V (Corollary 3.1), and

thus of MV . QED.

Runtime. The dominant factor for runtime is the required number of evaluations of MV .

To gather data for the perception model, GAS requires Θ(|G|Ni) evaluations of MV . The

amount of time required to train Mper and construct MGPC is insignificant in comparison.

For state distribution estimation over time, MCS requires Θ(NsT ) evaluations of MV

(Ns being the number of samples used for distribution estimation), while GAS requires the

same number of evaluations of the much faster MGPC. For estimating sensitivity indices

using estimators, we must evaluate either M ′
V or MGPC Θ(Ns) times, followed by mean and

variance calculations.

3.4 METHODOLOGY

Benchmarks. We chose five benchmarks that include autonomous vehicle systems such

as self driving cars, unmanned aircraft, and crop monitoring vehicles. Table 3.1 shows

details of the benchmarks. Columns 2 and 3 state the vehicle’s perception and control

system, respectively. Column 4 indicates if GAS made a replacement in the perception

(Perc) or control (Ctrl) system, and the nature of the replacement, prior to creating the

complete vehicle system surrogate. Column 5 shows the number of state and random variable

dimensions. We describe the benchmarks further below:

• Crop-Monitor: A crop monitoring vehicle that travels between two rows of crops and

must avoid hitting them. This is our main example (Section 3.1).

• Car-Straight: A self-driving vehicle that must drive within a road lane (Dsafe
S ≡

|heading| ≤ π/12 ∧ |distance| ≤ 1.2m). It uses LaneNet [30, 149] to perceive the lane

boundaries and uses the pure pursuit controller. We derive this benchmark from [150].
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• Car-Curved: Similar to the previous benchmark, but the vehicle must drive on a

circular road of radius 100m.

• ACAS-Table: An unmanned aircraft that must avoid a near miss or collision with an

intruder (Dsafe
S ≡ |separation| ≥ 0.1524km). The aircraft uses the ACAS-Xu lookup

tables from [151]. As this model’s state includes a categorical variable (the previous

ACAS advisory), we use ME-GPC and predict the next advisory using a decision tree

as the ancillary model.

• ACAS-NN: Similar to the previous benchmark, but uses a neural network from [151]

trained to replace the lookup table.

Implementation and experimental setup. We performed our experiments on machines

with a Quadro P5000 GPU, using a single Xeon CPU core. We implement GAS in Python,

using the chaospy library [152]. We use Gazebo 11 [145] to capture images for Crop-Monitor,

Car-Straight, and Car-Curved benchmarks. We run all image processing neural networks on

the GPU. We run ACAS-NN entirely on CPU as its network is small.

For our main evaluation, we create only GPC surrogate models with GAS. We briefly

discuss the results of using some alternative surrogate models in Section 3.5.5. For estimating

state distribution over time, we compare the GAS-generated MGPC to a MCS baseline using

MV . We set GAS parameters as follows: G is a 11 × 11 grid in the safe state space,

Ni = 350, and oGPC = 4. We additionally experiment with alternate values for G and Ni,

as they directly affect perception model training data generation time. We set the number

of time steps T = 100. To keep MCS runtime within 24 hours, We set Ns = 1, 000 for MCS.

For GAS, we increase Ns to 10,000 as MGPC is much faster than MV and increasing the

number of samples decreases sampling error for MGPC.

For calculating sensitivity indices, we calculate sensitivity using both the analytical and

empirical method described in Section 3.3. It is not possible to compare sensitivity indices

against MV , as MV has a different set of inputs (environment specification instead of a sample

from N (0, 1)). Therefore, we use sensitivity index calculation using M ′
V as the baseline. For

the empirical method, we set Ns = 106, but also monitor the results obtained by setting Ns

to 104, 105, and 107. We calculate the sensitivity of state variables to those in the previous

time step, as well as the sensitivity of the change in the state variables.

Environmental factors. For the Crop-Monitor benchmark, our test scenario includes two

types of crops (corn and tobacco). There are four different corn growth stages. For each type

and growth stage, there are multiple crop models (30 in total). For the Car benchmarks, our
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scenario includes the presence of 0-2 other cars, 0-2 pedestrians, and skid marks that may

obstruct lane markings. We also vary lighting conditions from midday to dusk lighting.

Distribution similarity metrics. We use two complementary similarity metrics to sep-

arately compare each dimension of the MCS and GAS state distributions at each time

step. The conservative Kolmogorov-Smirnov (KS) statistic quantifies the maximum dis-

tance between the cumulative distribution functions of the two distributions at any point.

The Wasserstein metric quantifies the minimum probability mass that must be moved to

transform one distribution into the other. For both metrics, a lower value indicates greater

distribution similarity. We can use these distribution similarity metrics despite using more

samples for GAS than for MCS.

Safe state probability similarity metrics. We also compare the fraction of simulated

vehicles remaining in the safe region till each time step using three metrics. The two sample

t-test is a statistical test to check if the underlying distributions used to draw two sets of

samples are the same. The RMS error is the root-mean-square of the differences in safe state

probability at each time step. Lastly, we calculate the Pearson cross-correlation coefficient

between the two sets of safe state probabilities. When plotting safe state probability, we

also draw the 95% bootstrap confidence interval. This confidence interval does not directly

compare the two plots, but rather, for each individual plot, it provides an estimate of the

variation that can occur in that plot as a result of sampling error.

3.5 EVALUATION

3.5.1 Accuracy of GAS for Estimating the Probability That the Vehicle Will Remain in a
Safe State Over Time

Table 3.2 compares the distributions calculated by GAS and MCS for each benchmark

state variable. Columns 3-4 compare the mean and standard deviation of the distributions

at the final time step. Columns 5-6 show the maximum values of the KS statistic and

Wasserstein metric over all time steps. For most state variables, the mean and standard

deviation of the distributions match closely up to the final time step. This is also indicated

by the low values of the Wasserstein metric and the conservative KS statistic. The largest

difference is for the Car-Straight benchmark distance distribution. This occurs because

MGPC and MV converge towards slightly different states around the center of the safe state

space in later time steps. However, during the initial time steps where more simulated
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Table 3.2: Metrics for comparing state variable distributions

Benchmark Variable µGAS/µMCS σGAS/σMCS KSmax Wassmax

Crop-Monitor
Heading (rad) -0.004/-0.008 0.04/0.04 0.11 0.02
Distance (m) -0.01/-0.02 0.03/0.03 0.14 0.01

Car-Straight
Heading (rad) 0.0004/-0.0001 0.02/0.02 0.13 0.009
Distance (m) 0.16/0.08 0.09/0.12 0.41 0.08

Car-Curved
Heading (rad) -0.003/-0.005 0.006/0.007 0.17 0.003
Distance (m) 0.18/0.19 0.04/0.05 0.15 0.02

ACAS-Table
Crossrange (km) -0.07/-0.03 0.85/0.88 0.05 0.04
Downrange (km) -0.61/-0.53 0.23/0.22 0.13 0.08
Heading (rad) 0.63/-0.54 2.82/2.80 0.23 1.23

ACAS-NN
Crossrange (km) -0.01/-0.01 0.93/0.91 0.02 0.03
Downrange (km) -0.45/-0.58 0.17/0.11 0.31 0.13
Heading (rad) 0.42/0.15 2.70/2.75 0.06 0.27

(a) Crop-Monitor (b) Car-Straight (c) Car-Curved (d) ACAS-Table (e) ACAS-NN

Figure 3.6: Evolution of the probability of remaining in a safe state over time. Blue solid:
GAS, red dashed: MCS.

vehicles are close to entering unsafe states, the KS statistic does not exceed 0.15. A similar

phenomenon affects the ACAS-NN downrange distance variable. For ACAS-Table, MGPC

and MV occasionally turn in different directions to avoid an intruder approaching head-on,

in situations where turning in either direction is equally beneficial. This leads to a large

deviation in the heading variable.

Figure 3.6 shows how the probability that the vehicle remains in a safe state evolves over

time. The blue solid and red dashed plots show the probability estimates obtained using

GAS and MCS, respectively. The shaded region around each plot shows the 95% bootstrap

confidence interval. Because we use 10×more samples when estimating safe state probability

with GAS as compared to MCS, the sampling error is smaller for GAS, which leads to a

smaller confidence interval. Since MGPC approximates the behavior of MV , as opposed to

under/over approximation of reachable states, GAS’s safe state probability estimate can be

either greater or lesser than the MCS estimate.

Table 3.3 shows the metrics we use to measure the similarity of the safe state probabilities
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Table 3.3: Metrics for comparing the probability of
remaining in a safe state

Benchmark t-test RMS err. X-Cor

Crop-Monitor 99/100 0.004 0.974
Car-Straight 97/100 0.001 0.862
Car-Curved 98/100 0.001 0.865
ACAS-Table 100/100 0.007 0.998
ACAS-NN 100/100 0.003 0.999

Table 3.4: Maximum difference in
sensitivity indices

Benchmark x0→y1 x0→dy0

Crop-Monitor 0.00003 0.0004
Car-Straight 0.0002 0.006
Car-Curved 0.00003 0.003
ACAS-Table 0.00001 0.009
ACAS-NN 0.00002 0.061

from Figure 3.6. Column 2 shows the number of time steps for which the t-test passed,

meaning that we could not reject the null hypothesis that the probabilities are equal. Col-

umn 3 shows the RMS error, and Column 4 shows the cross-correlation. The similarity of

the state distributions leads directly to the similarity of the safe state probability for most

time steps.

We extended the Crop-Monitor and Car benchmark experiments to 500 time steps to

confirm that the safe state probability does not deviate after 100 time steps. We did not

similarly extend the ACAS experiments as the ACAS system is primarily relevant as the

aircraft approach each other, which is no longer the case after the first 100 time steps.

3.5.2 Accuracy of GAS for Estimating Global Sensitivity Indices of the Vehicle Model

Table 3.4 presents the maximum difference between sensitivity indices calculated using

MGPC and those calculated using M ′
V . Column 2 shows the sensitivity of the state variables

in time step 1 to those in time step 0 (x0→y1). Column 3 shows the sensitivity of the change

in the state variables (x0→ dy0, where dy0 = y1−y0). The sensitivity indices calculated by

MGPC and M ′
V match closely.

Figure 3.7 shows an example visual comparison of sensitivity indices calculated by GAS

and MCS for Crop-Monitor. The input variables include the heading and distance at time

step 0, and the two components of the raw sample (Raw0 and Raw1) that is transformed

into the perception neural network output distribution sample. The output variables are the

heading and distance at time step 1. There is one sensitivity index corresponding to each

input/output variable pair. The blue solid line shows the sensitivity calculated analytically

using MGPC, the blue dotted line shows the sensitivity calculated empirically using MGPC,

and the red dashed line shows the sensitivity calculated empirically using M ′
V . In each

subplot, the X-Axis shows the number of samples used for empirical estimation, while the

Y-Axis shows the calculated sensitivity index. As the number of estimation samples is

increased, the empirically calculated sensitivity indices converge towards those calculated
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Figure 3.7: Calculated sensitivity index comparison. Blue solid: GAS (analytical method),
blue dotted: GAS (empirical method), red dashed: MCS.

analytically. About 106 samples are needed for convergence.

3.5.3 Effect of GAS Perception Model Parameters on GAS Accuracy

Table 3.5 shows the effects of changing the perception model parameters G and Ni. Col-

umn 1 presents the value of the parameter. Columns 2-4 present the maximum KS statistic

and Wasserstein metric (×100) for the Crop-Monitor, Car-Straight, and Car-Curved bench-

marks, respectively. Column 5 presents the estimated speedup caused by changing the

parameter value, calculated based on the reduction in the number of images that must be

captured and processed. We exclude the ACAS benchmarks from this ablation study as they

do not use a perception model.

We focus on the cases where the error metrics change by 10% or more. While the grid

size G can be reduced to 9 × 9 without much loss of accuracy, further reducing it to 7 × 7

increases the error for all benchmarks. Similarly, reducing the number of images captured

at each grid point (Ni) to 225 does not cause much loss of accuracy, but further reducing it

to 100 images increases the error for all benchmarks. We prefer to err on the side of caution

by collecting 350 images over a 11 × 11 grid. The minimal change in accuracy caused by

increasing G from 9× 9 to 11× 11 or increasing Ni from 225 to 350 also shows that further

increases are unlikely to improve the accuracy of GAS.
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Table 3.5: Effect of changing perception model parameters on the KS statistic. An asterisk
(*) indicates the primary value used in our evaluation. Changes of 10% or more are annotated
with an ↑ for increases and an ↓ for decreases.

KSmax×100/Wassmax×100

Parameter Value Crop-Mon Car-Str Car-Cur Relative Speedup

Ground truth grid dimensions (G)

7× 7 20.3↑ / 2.43 46.8↑ / 9.63↑ 23.8↑ / 3.24↑ 2.5×
9× 9 12.2↓ / 2.25 42.4 / 8.39 16.2 / 2.00↓ 1.5×
11× 11* 13.8 / 2.37 41.1 / 7.97 17.0 / 2.23 1.0×

Images captured per grid point (Ni)

100 33.1↑ / 2.34 49.6↑ / 9.77↑ 18.7↑ / 2.59↑ 3.5×
225 16.1↑ / 2.35 40.5 / 7.91 17.0 / 2.43 1.6×
350* 13.8 / 2.37 41.1 / 7.97 17.0 / 2.23 1.0×

Table 3.6: Time required for the construc-
tion of MGPC

Benchmark tdat tper/anc tGPC

Crop-Monitor 8.5h 1.1s 1.4s
Car-Straight 3.3h 1.1s 1.4s
Car-Curved 3.1h 1.1s 1.4s
ACAS-Table N/A 0.3s 0.3s
ACAS-NN N/A 0.3s 0.4s

Table 3.7: Time required for estimating the
state distribution over time

Benchmark tMCS tGAS

Crop-Monitor 19.5h 8.5h (2.3×)
Car-Straight 6.8h 3.3h (2.1×)
Car-Curved 6.5h 3.1h (2.1×)
ACAS-Table 8.0s 1.1s (7.3×)
ACAS-NN 10.7s 1.2s (8.9×)

3.5.4 Speedup of GAS Compared to Monte Carlo Simulation

GAS model construction. Table 3.6 shows the time required to construct the GAS

model. Column 2 shows the time required to gather training data for the perception model

when necessary. Column 3 shows the time required to create the perception and/or ancillary

model when necessary. Column 4 shows the time required to create MGPC. While creating

the perception, ancillary, and GPC models takes a few seconds, gathering the training data

for the perception model takes several hours. As shown in Section 3.5.3, reducing perception

model parameters such as |G| and Ni can reduce this time, but can also lead to a reduction

in accuracy.

State distribution estimation. Table 3.7 shows the time required by GAS and MCS

for state distribution estimation. Column 2 shows the time required for using MV for state

distribution estimation. Column 3 shows the total time required by GAS for state distribu-

tion estimation; this includes the total time required to construct MGPC (from Table 3.6)

and then use it for state distribution estimation via Algorithm 3.4. Column 3 also shows

the speedup of GAS over MCS. The costly process of gathering and processing images con-
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Table 3.8: Time usage for sensitivity analysis (excluding tdat and tper from Table 3.6)

Benchmark temp
MCS temp

GAS tanaGAS

Crop-Monitor 9.5s 6.2s (1.3×) 11.4s (0.7×)
Car-Straight 9.7s 6.2s (1.3×) 11.4s (0.8×)
Car-Curved 9.8s 6.2s (1.3×) 11.3s (0.8×)
ACAS-Table 5.2s 5.6s (0.9×) 3.3s (1.6×)
ACAS-NN 4.8s 5.3s (0.9×) 3.1s (1.5×)

tributes to over 99% of tMCS for the Crop-Monitor and Car benchmarks. While increasing

Ns or T increases tMCS proportionally, the corresponding increase in tGAS is negligible as the

time required to create the perception model is independent of Ns and T . Consequently, the

speedup of GAS for state distribution estimation increases for longer experiments or a higher

number of samples. For the ACAS benchmarks, the control component of MV contributes

to over 90% of tMCS. MGPC is faster than even the dynamics component of MV , leading to

significant speedups for these benchmarks.

Sensitivity analysis. Table 3.8 shows the time required by GAS and MCS for sensitivity

analysis. Columns 2-3 show the required for calculating all sensitivity indices empirically

with M ′
V and MGPC respectively. Column 4 shows the time required calculating all sensitivity

indices analytically with MGPC. Columns 3-4 also show the speedup of GAS for the two

approaches using MGPC. Since both M ′
V and MGPC use the perception model for the Crop-

Monitor and Car benchmarks, we exclude the time required to train and construct the

perception model for those benchmarks. The replacement of the perception system by the

perception model significantly speeds up M ′
V as compared to MV . As this optimized version

is the baseline for sensitivity indices calculation, the speedup of GAS for this application

is lower than that for distribution estimation. While the analytical and empirical methods

for calculating sensitivity using MGPC have similar accuracy, different methods are faster for

different benchmarks.

Rapid iteration. For the Crop-Monitor and Car benchmarks, if the perception system

is altered, GAS must create a new perception and GPC model. Consequently, while the

speedup of GAS stays the same, the total amount of time saved over MCS increases with

each such change. If only the vehicle control or dynamics components are altered, then GAS

does not need to create a new perception model. Because gathering data for the perception

model is the major contributor to the runtime of GAS as shown in Tables 3.6 and 3.7, this

allows vehicle developers to rapidly make changes to the control and dynamics systems of

the vehicle and re-analyze the system with these changes within seconds.
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Table 3.9: t-test results comparison among surrogate model candidates

Benchmark GPC Poly reg Neural net

Crop-Monitor 99/100 100/100 (52± 40)/100
Car-Straight 97/100 97/100 (49± 39)/100
Car-Curved 98/100 97/100 (46± 35)/100
ACAS-Table 100/100 99/100 (46± 1)/100
ACAS-NN 100/100 98/100 (46± 4)/100

3.5.5 Comparison of GPC to Other GAS Surrogate Model Options

Although we focus on GPC surrogate models, GAS also enables the use of other surrogate

models by replacing the complex perception system with a perception model. That is, we

can train a different type of surrogate model instead of a GPC model. We can then use the

alternative surrogate model for state distribution estimation or sensitivity analysis. Here,

we briefly describe our results for two alternative surrogate models.

We experimented with using standard polynomial regression for creating the surrogate

model. For training and testing data, we chose points in the safe state space using a Sobol

sequence. Column 3 of Table 3.9 shows the t-test results for the regression surrogate model.

For most benchmarks, the accuracy of the regression surrogate model is slightly lower than

that of the GPC surrogate model (Column 2). This is in line with the fact that GPC

produces the most optimal polynomial surrogate model for any order ([141, Equation 5.9])

in terms of `2 error. Further increasing the order of the regression surrogate model does not

increase accuracy, but rather causes overfitting. The other safe state probability similarity

metrics also show similar trends.

We also experimented with using a neural network surrogate model. Once again, we

chose points in the safe state space using a Sobol sequence to generate training/testing data.

We experimented with various neural network topologies and activations, with the number

of parameters being at least the number used by the GPC model. We found that the

accuracy of this surrogate model varied widely with the initial seed. Column 4 of Table 3.9

shows the t-test results for the neural network surrogate model. Due to the dependence on

the initial seed, the results are presented in the form (mean ± standard deviation). The

standard deviation is high for the Crop-Monitor and Car benchmarks, and the mean is low

for all benchmarks. Without the original vehicle model for comparison, it would not be

possible to know which random restart produced the most accurate model. In contrast,

GPC deterministically produces an optimal polynomial model.
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Figure 3.8: Effect of truncation on GPC model terms and construction time for an order 4
GPC model.

3.6 DISCUSSION

3.6.1 Scalability

The GPC polynomial model must consider all possible interactions between input vari-

ables. As a result, it can suffer from the curse of dimensionality (combinatorial explosion of

the number of polynomial terms). This is a general limitation of GPC, for which researchers

in engineering applications have proposed solutions such as low-rank approximation [153].

Another solution is to omit higher-order polynomial terms in which multiple state variables

interact [154]. This is similar to the method of eliminating high-frequency components of

images used by JPEG [34] for lossy image compression. Figure 3.8 shows the effects of

this polynomial truncation approach for an order 4 GPC model. For both plots, the X-

Axis shows the number of dimensions in the input state space. The Y-Axis of the left plot

shows the number of polynomial terms in the constructed GPC model, and the Y-Axis of

the right plot shows the model construction time. The dashed red lines and the solid blue

lines show the results for the full polynomial and the truncated polynomial, respectively.

The speedup from truncation increases rapidly with dimensionality. Critically, this method

retains lower-order interaction terms, ensuring that the constructed GPC model can still

account for interactions between state variables (albeit to a lesser degree of fidelity).
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3.6.2 Limitations

Environment distribution. GAS samples the provided environment distribution DE
when generating training data for the perception model in Algorithm 3.1. If GAS uses

the perception model created for DE to create a GPC model for a scenario with a signifi-

cantly different environment distribution D′E, it can lead to a reduction in accuracy of the

final GPC model. To prevent this issue, we must carefully choose DE to represent the dis-

tribution of environments the vehicle is expected to operate in. If it becomes necessary to

create a new perception model for D′E, we may be able to partially reuse existing training

data from DE that also fits into D′E, reducing the additional time required to create the new

perception model.

Supported distributions. To construct the GPC model in Algorithm 3.3, all compo-

nent distributions of the multivariate distribution J must have corresponding orthogonal

polynomials. This is true for a wide variety of distributions such as the uniform, normal,

beta, and gamma distributions. We must ensure that all input variables for the GPC model

are independent and are instances of these distributions. The wide variety of supported

distributions is usually sufficient for modeling relevant input variables.

Polynomial models. As GPC produces a polynomial model, its accuracy is limited when

modeling functions with discontinuities or limited differentiability [141, Theorem 3.6]. Prac-

tically, this means that the GPC model will have a systemic bias that can be reduced, but

not eliminated. Our evaluation shows that GAS’s hyperparameters must be carefully chosen

to maximize accuracy while still providing speedups over MCS. Once the ideal hyperparam-

eters are found for modeling a particular vehicle system, developers can reuse them when

making iterative changes to the vehicle model.

3.6.3 Alternative Formulations

The GPC model construction process in Algorithm 3.3 evaluates the abstracted vehicle

model at specific quadrature nodes. Instead of constructing a perception model as in Sec-

tion 3.3.2, we attempted to directly calculate and use the actual perception neural network

output distributions at these quadrature nodes. However, if the quadrature nodes change

(e.g., by changing the input distribution or order of GPC), then new images must be cap-

tured and processed for the new quadrature nodes. In contrast, the perception model can

be directly reused as it is agnostic to the quadrature nodes.
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We also experimented with replacing only parts of M ′
V with GPC as follows: first, we

replaced the perception system with the perception model to create M ′
V as in Section 3.3.2.

Then, instead of replacing all of M ′
V with a GPC model as in Section 3.3.3, we replaced

only the vehicle control and dynamics systems (as the perception system had already been

replaced by a polynomial model Mper). While the accuracy of this approach was the same as

our main approach, the partially replaced model was about 3× slower than the fully replaced

model during evaluation for all benchmarks.

3.7 RELATED WORK

Analysis and verification of vehicle systems. DryVR [155] is a system for verifying the

safety of vehicle models that consist of a whitebox mode-switching control system composed

with a blackbox dynamics system. DryVR obtains multiple samples from the blackbox

dynamics and uses it give an over-approximate guarantee on the reachable set of states.

In comparison, GAS focuses on perception and control systems which include blackbox

components such as neural networks.

Pasareanu et al. [83] verify safety properties for vehicle systems with learning enabled

components. They separately analyze the learning enabled components to derive guarantees

of the component’s behavior when certain assumptions about the input to that component

hold. Such precise verification unfortunately does not scale to large image processing neural

networks used to perceive the vehicle state from camera images. GAS is able to handle

vehicle systems with such complex neural networks by using sampling to provide precise

estimates of the probability that the vehicle will violate safety properties.

Jha et al. [156] and DeepDECS [157] analyze perception system uncertainty to create a

correct by synthesis controller that satisfies a temporal logic safety constraint. GAS allows

us to estimate the safety of existing, well known controllers for broad applications. Althoff

et al. [158] focus on online verification of vehicle safety properties to adapt to unique traffic

situations, assuming an upper bound on the noise of the perception system. In contrast, GAS

allows the programmer to directly specify the perception system, and handles the dynamic

nature of perception error through the perception model.

Musau et al. [159] complement complex neural network controllers with a safety controller

which takes over if a runtime reachability analysis detects a potential collision. GAS’s state

distribution estimates can be used to determine the degree of reliability of the neural network

controller and therefore the optimal criteria for switching to the safety controller.

Yang et al. [160] propose a runtime system for detecting environmental conditions that

were not part of the training data for a pre-trained perception system. Cheng et al. [161]
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ensure that the training data covers different combinations of environmental factors, based

on their relative importance. Scenic [162] is a probabilistic language for specifying scenes

in a virtual world for generating training images for perception neural networks in various

environments. These works can be used when sampling images and/or prioritizing envi-

ronments for training GAS’s perception model in order to ensure that GAS’s results are

valid for the entire range of expected environments. For our evaluation, we used simple but

realistic distributions of environmental parameters when generating images for training the

perception model.

Recent surveys [136, 137] show that developers in the autonomous vehicle industry use

vehicle simulation for regression testing of proposed vehicle system modifications. These

surveys also show that developers cite the high cost of simulation as a major roadblock to

integrating such tests more extensively into their workflow. GAS aims to help overcome this

obstacle by significantly reducing the cost of testing vehicle systems as they are modified

over time.

System simulation and modeling. Kewlani et al. [142] create and use GPC surrogate

models of vehicle dynamics components. Lin et al. [140] do the same using small neural

networks as surrogate models. Replacing only vehicle dynamics with GPC surrogates leads to

negligible speedup as the perception and control components of the vehicle model contributed

to 90% or more of the runtime of the MCS analysis of our benchmarks. GAS creates GPC

surrogate models of complete vehicle systems; GAS’s GPC model also replaces the expensive

perception and control components. ARIsTEO [138] uses abstraction refinement to create

surrogate models of cyber-physical systems with low dimensional inputs. GAS handles high-

dimensional image inputs by first creating a perception model, and then creates a surrogate

model of the reduced-dimensionality abstract vehicle model.

Li et al. [163] create small neural network surrogate models to calculate a fitness function

for an autonomous driving system in various traffic scenarios. GAS’s surrogate models

instead estimate the state distribution of the vehicle over time, and this information can

then be used to calculate various fitness metrics. Michelmore et al. [164] evaluate the safety

of end-to-end Bayesian Neural Network (BNN) controllers. While GAS’s perception model

focuses on replacing regression DNNs, vehicle models with BNNs are an interesting target

for extending GAS.

Simplifying complex perception and control systems. Cheng et al. [146] explore the

correspondence between neural networks and polynomial regressions. Unlike their approach,

GAS’s perception model only needs to predict the distribution of neural network outputs,
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instead of individual input-output relationships.

Several approaches focus on sound and complete verification of safety properties of ACAS-

Xu neural networks (e.g., that the network will not give a COC advisory when an intruder

aircraft is directly ahead on a collision course [165, 166]). Others focus on providing proba-

bilistic guarantees (e.g., bounding the probability that similar inputs will result in different

advisories [167], or the probability of violating the safety property described above [168]).

Unlike GAS and the approaches described below, these approaches focus on checking safety

properties of the networks in isolation, that is, they do not take into account how the aircraft

moves over time.

Several other recent approaches (e.g., [151, 169, 170]) focus on deterministically verifying

properties of a closed-loop system containing ACAS-Xu neural networks and aircraft dynam-

ics. In particular, Bak and Tran [169] checked the safety of the neural networks from [171]

in 32 minutes on a 128 core machine. In contrast to those approaches, GAS does simulation-

based probabilistic testing of ACAS-Xu neural networks coupled with aircraft dynamics.

While GAS can find unsafe scenarios, it cannot provide non-probabilistic safety guarantees.

Julian et al. [171] performed 1.5 million simulations to test their ACAS-Xu neural network,

and Owen and Kochenderfer [172] performed 10 million simulations to determine whether

horizontal or vertical advisories are safer in different states. We view GAS as a useful tool

for speeding up such simulations and sanity checks of the closed-loop aircraft system when

making experimental changes to it, before moving on to full verification.

Ghosh et al. [173] iteratively synthesize perception models and controllers guided by coun-

terexamples to temporal logic safety properties. Hsieh et al. [174] create a perception model

where the mean is calculated using piecewise linear regression and the allowable variance is

calculated based on the controller code using program analysis tools like CBMC. Astorga

et al. [175] create perception contracts, which describe the uncertainty that the perception

system can generate, and the control and dynamics system can tolerate, without violating

safety properties. Unlike these works, GAS’s perception model is independent of the con-

troller, and can be reused without requiring additional sampling when iterative changes are

made to the controller during development.
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Chapter 4: Aloe

With the end of Dennard scaling and the slowdown of Moore’s law, hardware is becoming

increasingly susceptible to operational errors, due to imperfect manufacturing, aging, and

variations of environmental factors such as temperature, voltage, or radiation [4, 5, 6, 176,

177]. While many hardware errors are still routinely caught and corrected at the hardware

level, some errors can propagate across the system stack and corrupt program data. Classical

solutions for detecting and correcting errors come at a high cost. For example, indiscriminate

instruction replication or n-modular redundancy can greatly increase a program’s resource

usage, even after applying various optimizations [70, 71].

Many modern applications have the freedom to produce results with a variable level of

accuracy. Example workloads include audio and video processing, machine learning, big-

data analytics, and probabilistic inference. These applications can tolerate selective error

detection and recovery. That is, we can choose to check for and recover from errors in only

certain critical components of the application.

Various automated and developer-assisted techniques enable developing acceptably reli-

able executions with reduced resource usage [48, 51, 52, 64, 65, 67, 68, 69, 72, 73, 87, 178,

179, 180]. Several reliability-aware languages like Relax [63] and Topaz [74], expose try-

check-recover blocks to the developer, which have the form shown in Figure 4.1. Potentially

unreliable code executes inside the try block. The check function analyzes the program

state and attempts to detect potential errors in the computation. It can use various exact

procedures (e.g., NP-hard problem solutions can be verified in polynomial time) or approx-

imate procedures (e.g., anomaly detection [74]). If the check fails, the execution runs the

recovery code inside the recover block. try-check-recover blocks are appealing as they

empower developers with fine-grained control over customized recovery strategies and can

provide hints to program analyses and compilers on how to generate code.

Analyzing the quantitative reliability and safety of computations has been a topic of in-

creased interest in the programming languages community. Quantitative reliability denotes

the probability with which a computation with unreliable operations produces the same (or

acceptably similar) results as a fully reliable execution. For instance, a reliability of 0.99

states that 99% of executions of an unreliable program will generate the same result as a

1 try { code; }

2 check { check(programState); }

3 recover { code; }

Figure 4.1: The try-check-recover block
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perfectly reliable execution. Example analyses of quantitative reliability include Rely [44],

Chisel [36], Decaf [47], and Parallely [45]. Unfortunately, existing reliability analyses are sig-

nificantly imprecise when analyzing computations with error detection and recovery mecha-

nisms. At best, they treat these constructs as arbitrary conditional code, leading to a uniform

reduction in the reliability of the computation. This is imprecise, because try-check-recover

blocks will typically not reduce the reliability of the computation, even if the code within

the try block is unreliable.

Our work. We present Aloe, the first static analysis of quantifiable reliability of programs

that include constructs for selective error detection and recovery. The Aloe language ex-

poses try-check-recover blocks and multiple detection and recovery choices to the developer.

Aloe precisely computes the overall reliability of each try-check-recover block and uses this

information to calculate the overall reliability of the whole program. Aloe supports both

perfect checkers (that always detect whether or not an error occurred while executing the

try block) and imperfect checkers (that can suffer from false positives and negatives). Aloe

focuses on computations with idempotent code inside the try block (i.e. the code can be

re-executed without previous executions affecting the results of the current execution) and

recover blocks that re-execute the computation with different levels of reliability.

Aloe’s analysis builds on top of Rely’s precondition generator, which computes a quan-

titative reliability predicate for each statement in the program. Aloe specifies the rules

for precisely analyzing try-check-recover blocks with multiple recovery strategies. Aloe also

provides new rules for simplification of reliability predicates that improve its applicabil-

ity. The analysis time is proportional to the number of statements in the program after

unrolling bounded loops (as in Rely). Our approach directly extends to other similar anal-

yses [36, 45, 47]. Aloe’s precise analysis of try-check-recover blocks enables more precise

analysis of programs using them, allowing them to save resources by making less conserva-

tive assumptions of the reliability of such protected sub-components.

Results. We implemented Aloe and applied it to eight programs from various benchmarks

that were previously used in approximate computing research. We used the specifications of

the unreliable hardware from EnerJ [65] and the specifications of the approximate checkers

from Topaz [74]. Our experiments showed that Aloe’s analysis of the try-check-recover

blocks is significantly more precise than the existing analysis in Rely; Aloe verified all kernels

identified in each benchmark for the reliability bound 0.9999. Aloe also verified the end-

to-end reliability of each program’s output for the bound 0.99. These results are orders of

magnitude more precise than the baseline Rely analysis, which was not able to verify any
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1 newPagerank = 0.15;

2 j = 0;

3 repeat MaxEdges {

4 if j < NumIn {

5 neighbor = Edges[j];

6 numOut = Outlinks[neighbor ];

7 current = Pageranks[neighbor ];

8 temp = 0.85 * current;

9 temp = temp / numOut;

10 newPagerank = newPagerank + temp;

11 j = j + 1;

12 };

13 };

Figure 4.2: PageRank kernel

of the kernel or end-to-end reliability bounds. We also showed that kernels with try-check-

recover blocks produced results with acceptable reliability even when the checkers themselves

were imperfect (i.e., they could miss errors or report spurious errors).

4.1 EXAMPLE

PageRank is a link analysis algorithm that ranks web pages according to their importance.

Figure 4.2 presents the implementation of the PageRank kernel for a single node in a graph.

The PageRank of a node is a weighted sum of the PageRanks of each incoming edge. The

PageRank is updated in this manner over multiple iterations. This computation is known

to be tolerant to errors, partly due to its iterative nature.

We study the execution of this kernel on unreliable hardware, in which the arithmetic oper-

ations can produce incorrect results with some probability. For example, EnerJ [65] presents

several approximation strategies that provide arithmetic instructions that save energy but

produce erroneous results with probability 10−6, 10−4, or 10−2. We model such instructions

using the probabilistic choice statement ecorrect [p] ewrong, which states that the operation

produces the correct result with probability p, and otherwise produces some incorrect result.

4.1.1 Try-Check-Recover Blocks

One possible approach for increasing the reliability of computations running on unreliable

hardware is to check if an error occurred during the execution of the computation, and redo

the computation using precise hardware if such an error is detected. Figure 4.3 presents

this approach for the PageRank kernel. The program first runs the statements in the try
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1 newPagerank = 0.15;

2 j = 0;

3 repeat MaxEdges {

4 if j < NumIn {

5 neighbor = Edges[j];

6 numOut = Outlinks[neighbor ];

7 current = Pageranks[neighbor ];

8 try {

9 temp = 0.85 * current [0.999] rand();

10 temp = temp / numOut [0.999] rand();

11 sum = newPagerank + temp [0.999] rand();

12 } check { checker(sum , current , numOut , newPagerank) }

13 recover {

14 temp = 0.85 * current [1] rand();

15 temp = temp / numOut [1] rand();

16 sum = newPagerank + temp [1] rand();

17 };

18 newPagerank = sum;

19 j = j + 1;

20 };

21 };

Figure 4.3: Protected PageRank kernel for use on unreliable hardware

block. The arithmetic operations in the try block are unreliable and only produce the

correct value with probability 0.999. Otherwise, they produce a random garbage value. The

execution continues until the end of the try block, even if an arithmetic operation produces

an incorrect result.

Checking and recovery. Next, the program evaluates the check function on the program

state to detect if there was an error in the computation. If the checker detects an error, it

runs the recover block, which re-executes the computation in the try block on fully reliable

hardware. If the checker can identify all errors, the overall computation becomes fully

reliable. Moreover, if the execution of the checker is inexpensive, the overall computation

run on unreliable hardware may be more energy efficient than the original computation in

Figure 4.2 run on reliable hardware.

For full reliability, the checker must ensure that all output variables have correct val-

ues. Error detection mechanisms can either be implemented in hardware [75, 181] or in

software. Software techniques include re-executing the computation in the try block and

comparing the results, verifying the result with a verification algorithm (e.g. the results of

NP-hard problems are verifiable in polynomial time), or identifying outliers using machine

learning [74]. For our example, we assume that the hardware sets an internal flag when an

error occurs in the try block (similar to Relax [63]), and this internal flag is then read by
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1 Stry;

2 if ( checker (...) ) {

3 skip;

4 } else {

5 Srec;

6 }

Figure 4.4: Recovery mechanism implemented via a conditional statement

the check function.

4.1.2 Verification of Reliability

We define reliability as the probability that the results of the computation are correct

(equal to the results of an execution with no errors). We want to verify that the calculated

variable newPagerank is fully reliable, i.e., its reliability is equal to 1.

Encoding detection and recovery in Rely. The existing quantitative reliability anal-

ysis from Rely cannot be used to accurately calculate the reliability of a try-check-recover

block. To represent this computation in Rely, one can convert the try-check-recover state-

ment to a conditional statement, as shown in Figure 4.4. In Figure 4.4, Stry and Srec

represent the instructions in the try and recover block, respectively. The semantics of this

computation closely mirror those of the original try-check-recover block. However, Rely’s

analysis cannot infer that Srec only executes when Stry produces incorrect results and that

it eliminates the error produced by Stry. Instead, Rely conservatively assumes that errors in

Stry can remain uncorrected. On the other hand, Aloe’s precise analysis of try-check-recover

blocks allows it to correctly determine that the overall computation is fully reliable.

4.1.3 Results

For MaxEdges = 8, Aloe’s analysis automatically shows that the reliability of newPagerank

is 1.0 due to the recovery mechanism detecting and fixing all errors. The analysis runs in

3ms. In contrast, Rely’s analysis is too conservative; it calculates a reliability of 0.976. Aloe

can analyze several other interesting scenarios which we describe next.

Recovery may also be unreliable. If the recover block is also executed on unreli-

able hardware, then it may also experience errors. Suppose arithmetic instructions in the

recover block can produce an incorrect result with probability 10−4. Aloe computes that
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the reliability of the try and recover blocks in isolation is 0.997 and 0.9997 respectively.

Since both try and recover must produce incorrect results for the overall try-check-recover

block to produce incorrect results, the overall reliability of the try-check-recover block is

0.9999991. When MaxEdges = 8, the reliability of the entire kernel is 0.999993. In this

way, it is possible to combine multiple unreliable sub-components to produce more reliable

components. In contrast, Rely’s analysis calculates the reliability of the kernel as 0.976.

Checkers may be unreliable. We also analyzed the impact of an imperfect check func-

tion on the reliability of newPagerank. For a check function that detects 95% of erroneous

runs, and may detect spurious errors 5% of the time, Aloe calculated that the newPagerank

reliability was 0.9999.

4.2 BACKGROUND

Aloe’s quantitative reliability analysis builds on the similar analysis of Rely [44], which

we review in brief below.

Reliability predicates. We generate reliability predicates to constrain the reliability of

an approximate program. A reliability predicate Q has the following form:

Q := r ≤ Rf | Q ∧Q

Rf := r | R(O) | r · R(O)
(4.1)

A reliability factor (Rf ) is either a number r ∈ [0, 1], a joint reliability predicate R(O)

representing the probability that a set of variables O has the same values in an approximate

execution as an exact, error-free execution, or a product of the two. A reliability predicate

(Q) is either a comparison between a number and a reliability factor or a conjunction of

multiple reliability predicates.

For example, we can specify the constraint that the reliability of some variable x in

a program is at least 0.99 (99%) using the reliability predicate 0.99 ≤ R({x}). In this

predicate, R({x}) is the probability that an approximate execution of the program generates

the same value for x as an exact, error-free execution.

Reliability precondition generation. The reliability precondition generator is a func-

tion C ∈ S × Q 7→ Q that takes as inputs a statement and a postcondition that must be

satisfied after executing the statement and produces the corresponding precondition as the
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output. We use the existing precondition generation rules as in Rely and extend them to

Aloe’s new recovery constructs as described in Sections 4.4 and 4.5. These rules include:

C(x = e, Q ) = Q [R( ρ(e) ∪X ) / R( {x} ∪X ) ]

C(x = e1 [r] e2, Q ) = Q [ r · R( ρ(e1) ∪X ) / R( {x} ∪X ) ]

C( if x {S1} else {S2}, Q ) = C(S1, Q ) ∧ C(S2, Q )

(4.2)

For a simple assignment x = e, any reliability specification containing x is updated such that

x is replaced by the variables occurring in e (ρ(e)) as the reliability of x is only dependent

on the reliability of variables used in e. For a probabilistic assignment x = e1 [r] e2, the

reliability of x is equal to r (the probability of assigning the value of the correct expression

e1 to x) times the reliability of variables occurring in e1. Conditionals are analyzed as a

nondeterministic choice between the if and else branches. The precondition for a conditional

statement is the conjunction of the preconditions generated from the two branches. The

reliability of the branch variable is incorporated into the analysis via conditional flattening

([44, Section 5.1]). Bounded loops in Rely are unrolled into a sequence of nested conditionals.

Substitution. The substitution for reliability predicates in Rely, e0 [ e2 / e1 ], replaces all

occurrences of the expression e1 with the expression e2 within the expression e0. The sub-

stitution matches set patterns, e.g., the pattern R({x} ∪X) is a joint reliability factor that

contains the variable x, alongside with the remaining variables in the set X. The result of

R({x, z}) [R({y} ∪X) /R({x} ∪X) ] is R({y, z}).

4.3 LANGUAGE

4.3.1 Syntax

Figure 4.5 presents the syntax of the Aloe language, which is similar to the Rely lan-

guage [44] with added support for recovery mechanisms. Aloe uses the probabilistic choice

statement from Parallely [45] to explicitly represent unreliable operations and their failure

probability (in lieu of the +. notation and implicit hardware model from Rely).

To analyze a program, Aloe requires three main components:

• Program: a program written in the Aloe language.

• Approximation models: specifies the probabilities that instructions produce incorrect

results. We can define different models for the try and recover blocks.

65



n ∈N quantities
m ∈N ∪ F values
r ∈ [0, 1.0] probability
x, b ∈Var variables
a ∈ArrVar array variables
f ∈ Func external functions
op ∈ {+,−, . . .} arithmetic ops

Exp→m | x | f(Exp∗) expressions
|Exp op Exp

t → int<n> | float<n> basic types
D → t x | t a[n+] variable

|D ; D declarations

P →D ; S program

recovery →
redo[n] redo up to n times
| redo[ψ] redo on reliability model ψ

S →
skip empty program
| x = Exp assignment
| x = Exp [r] Exp probabilistic choice
| S ; S sequence
| x = a[Exp+] array load
| a[Exp+] = Exp array store
| if Exp {S} else {S} branching
| repeat n {S} repeat n times
| x = (T)Exp cast
| try {S} check {Exp}

recover {recovery} try-check-recover

Figure 4.5: Aloe language syntax

• Specification of checkers: specifies the false-positive rate (p
FP

) and the false-negative

rate (p
FN

) of check functions used to check for errors.

4.3.2 Semantics

References. A reference Ref is a pair 〈nb, 〈n1, ..., nk〉〉 that consists of a base address nb

and a dimension descriptor 〈n1, ..., nk〉. References describe the location and the dimension

of variables in the heap.

Frames, stacks, and heaps. A frame σ is an element of the domain E = Var → Ref,

which is the set of finite maps from program variables to references. A heap h ∈ H = N→
N ∪ F is a finite map from addresses (integers) to values. Values can be integers or floats.

An environment ε ∈ E×H is a pair of a frame and a heap.

Approximation models. An unreliable program executes within approximation model

ψ, which contains the parameters for approximation (e.g., the probability of selecting the

correct expression in a probabilistic choice statement). We define a special reliable model

1ψ, which executes the program without approximations.

Expressions. Aloe uses typical imperative language expression semantics. For example,

variables are evaluated by looking up the variable in the current stack frame and then

retrieving the variable value from the heap. In Aloe, most expressions always evaluate
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S-Assign-Prob-True

〈x = e1 [r] e2, σ, h〉
C,ψ(r)−→ψ 〈x = e1, σ, h〉

S-Assign-Prob-False

〈x = e1 [r] e2, σ, h〉
F,1−ψ(r)−→ψ 〈x = e2, σ, h〉

S-Try

〈S1, σ, h〉 λ,p−→ψ 〈S1′, σ′, h′〉

〈try {S1} check {e} recover {S2}, σ, h〉 λ,p−→ψ 〈try {S1’} check {e} recover {S2}, σ′, h′〉

S-Check-1

〈e, σ, h〉 C,1−→ψ 〈e′, σ, h〉

〈try {skip} check {e} recover {S2}, σ, h〉 C,1−→ψ 〈try {skip} check {e’} recover {S2}, σ, h〉

S-Check-True
n 6= 0

〈try {skip} check {n} recover {S2}, σ, h〉 C,1−→ψ 〈skip, σ, h〉

S-Check-False

〈try {skip} check {0} recover {S2}, σ, h〉 C,1−→ψ 〈S2, σ, h〉

Figure 4.6: Semantics of new statements introduced in Aloe

correctly; unreliability is only introduced via specific statements, or via expressions that are

calls to external unreliable functions.

Statements. The small-step relation 〈s, σ, h〉 λ,p−→ψ 〈s′, σ′, h′〉 defines the program evalu-

ating in a stack frame σ, and heap h with the transition label λ with probability p. The

label λ is either C, indicating the correct transition, or F , indicating the faulty transition.

Figure 4.6 presents the semantics rules for the new statements introduced in Aloe. The

semantics of other Aloe statements are derived from those of Rely. The next paragraphs

describe the new statements in detail.

Probabilistic choice. The probabilistic choice statement x = eC [r] eF assigns the value

of the correct expression (eC) to x with probability ψ(r), or otherwise assigns the value

of the faulty expression (eF ). The probability is provided as a symbolic variable r whose

concrete value ψ(r) is defined in the approximation model ψ. It can be used to model many

approximate computations. For example, we can model unreliable arithmetic instructions

as z = x 〈op〉 y [r] randVal(), which models an arithmetic operation that can produce a

garbage result with probability 1− ψ(r).
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S-Assign-Prob-Exact

〈x = e1 [r] e2, σ, h〉
C,1−→1ψ 〈x = e1, σ, h〉

S-TRY-Exact

〈try {skip} check {e} recover {S2}, σ, h〉 C,1−→1ψ 〈skip, σ, h〉

Figure 4.7: Exact execution semantics of statements

Idempotency. Aloe requires that the computations inside the try and recover blocks

are idempotent. That is, one execution of the computation must not influence the result of

a future execution of the same computation on the same input variables. This is typically

achieved by ensuring that the input and output variables of the computations are disjoint

sets. In addition, they must not cause any side effects that are visible to future executions

of those computations.

Try-Check-Recover. The recovery mechanism try {S1} check {e} recover {S2} first

executes the statement S1 in its entirety. It then evaluates the check expression e, which is

used to check if an error occurred during the execution of S1. If an error is detected (e = 0),

then it executes S2. As the computation in S1 is idempotent, the recovery code in S2 can

continue from the current state. This behavior is similar to that of try-catch statements

commonly used in exception handling, except that S1 is fully executed before the check.

Exact execution semantics. In the fully reliable model 1ψ, probabilistic choice state-

ments always assign the value of the correct expression. In try-check-recover statements, the

try block always executes correctly and the check always passes. Figure 4.7 shows the exact

execution semantics of relevant statements.

4.3.3 Reliability

Aggregate semantics. We use the following aggregate semantics from Rely to define the

reliability of a program:

Definition 4.1 (Trace semantics for programs). 〈·, ε〉 τ,p
=⇒ψ ε

′ represents the program trace

〈·, ε.σ, ε.h〉 λ1,p1−→ψ . . .
λn,pn−→ψ 〈skip, ε′.σ, ε′.h〉 where τ = λ1, . . . , λn, and p =

n

Π
i=1

pi

This big-step semantics is the reflexive transitive closure of the small-step global semantics

for programs and records a trace of the program. A trace τ is a sequence of small step global

transitions. The probability of the trace is the product of the probabilities of each transition.

The trace semantics are defined for environments ε (pairs of frames σ and heaps h).
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Definition 4.2 (Aggregate semantics for programs). 〈·, ε〉⇓pψε′ represents the aggregate of

traces 〈·, ε〉 τ,pτ=⇒ψ ε
′ where p =

∑
τ∈T

pτ

The big-step aggregate semantics enumerates over the set of all finite length traces and

sums the aggregate probability that a program starts in an environment ε and terminates in

an environment ε′. It accumulates the probability over all possible traces τ that end up in

the same final state.

Paired execution semantics. For reliability analysis, we define a paired execution se-

mantics that couples an original execution of a program with an approximate execution,

following the definition from Rely:

Definition 4.3 (Paired execution semantics). 〈s, 〈ε, ϕ〉〉 ⇓ψ 〈ε′, ϕ′〉 represents the paired

execution semantics where 〈s, ε〉⇓1
1ψ
ε′ and where ϕ′(ε′a) =

∑
εa

ϕ(εa) · pa and 〈s, εa〉⇓paψ ε′a

This relation states that from a configuration 〈ε, ϕ〉 consisting of an environment ε and an

environment distribution ϕ ∈ Φ, the paired execution yields a new configuration 〈ε′, ϕ′〉. The

fully reliable execution reaches the environment ε′ from the environment ε with probability 1

(expressed by the deterministic execution, 1ψ). The environment distributions ϕ and ϕ′ are

probability mass functions that map an environment to the probability that the unreliable

execution is in that environment. In particular, ϕ is a distribution on environments before

the execution of s, whereas ϕ′ is the distribution on environments after executing s.

Reliability transformer. Reliability predicates and the semantics of programs are con-

nected through the view of a program as a reliability transformer, following the definition

from Rely:

Definition 4.4 (Reliability transformer relation). ψ |= {Qpre} s {Qpost} is equivalent to

stating ∀ε, ϕ, ε′, ϕ′. (ε, ϕ) ∈ JQpreK ∧ 〈s, 〈ε, ϕ〉〉 ⇓ψ 〈ε′, ϕ′〉 =⇒ (ε′, ϕ′) ∈ JQpostK

Similar to the standard Hoare triple relation, if an environment and distribution pair

〈ε, ϕ〉 satisfy a reliability predicate Qpre, then the program’s paired execution transforms

them into a new pair 〈ε′, ϕ′〉 that satisfies a predicate Qpost.

4.3.4 Preprocessing

To simplify the analysis, we perform multiple preprocessing steps beforehand.
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1 try{ s1 }

2 check{e}

3 recover{ redo[n] }

7→

1 try{ s1 }

2 check{e}

3 recover{

4 try{ s1 }

5 check{e}

6 recover{ redo[n-1] }

7 }

Figure 4.8: Desugaring redo[n]

Desugaring recovery mechanisms. The Aloe language provides several syntactic con-

structs to help write programs:

• redo[n]: If the recovery mechanism of a try-check-recover block is redo[1], Aloe

replaces it with the code in the try block. If the recovery mechanism is redo[n] where

n > 1, Aloe replaces it with nested try-check-recover blocks as shown in Figure 4.8.

• redo[ψ2]: Another common recovery mechanism is to execute the program on a

different hardware configuration with higher reliability. In this case, Aloe replaces

redo[ψ2] with the code in the try block, but replaces all probabilities in probabilistic

choice statements with those from ψ2.

• Bounded loops: As in Rely, Aloe supports finite bounded loops, that it unrolls prior

to the reliability analysis.

4.4 RELIABILITY ANALYSIS: PERFECT CHECKER

Aloe’s reliability calculation extends that of Rely by adding additional rules for generating

reliability preconditions for the try-check-recover mechanism. These rules are only applicable

to postconditions whose joint reliability factor contains at least one variable updated within

the try-check-recover block. All other postconditions are unaffected by the try-check-recover

block, and become part of the generated precondition unmodified, as in [44].

Consider the following try-check-recover block:

try { s1; } check { e } recover { s2; }

For a try-check-recover block to satisfy a predicate Q after execution, it should be satisfied

by all possible execution paths through the try-check-recover block.
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s1

s2
7 r(1− ps1)(1− r2)R(X2)error (1− r2)

3 r(1− ps1)r2R(X2)no error (r2)
error (1− ps1)

3 rps1R(X1)
no error (ps1)

Figure 4.9: Probabilities for perfect checkers

4.4.1 Precondition Generation

Assume a perfect check. Figure 4.9 shows the tree of possible executions of the try-check-

recover block. If the checker detects an error, then s2 is executed and the results of s1’s

execution are discarded. There are two possible execution paths through the try-check-

recover block.

1. s1 executes correctly and the checker passes: In this case the check ensures that in-

structions in s1 do not degrade the reliability of any variables calculated in the try

block. The reliability of these variables only depends on the reliability of values flowing

into them in s1.

2. At least one instruction in s1 executes incorrectly, the checker fails indicating an error,

and s2 executes: As we ensure that the computation in s1 is idempotent, the error in

s1 does not affect the reliability of variables calculated in s2. Instead, it depends on

the probability that statements in s2 update variables reliably and the reliability of

values flowing into them in s2.

To handle these two scenarios, Aloe uses and combines the preconditions generated inde-

pendently for s1 and s2. Suppose the try-check-recover block must satisfy the postcondition

c ≤ r ·R(X). Similar to the precondition generation steps in Rely, we need to replace R(X)

in the postcondition with the total probability of reaching a state where the variables in X

have the correct value after executing the try-check-recover block.

Case 1. Suppose that running Rely precondition generation on s1 results in the predicate

c ≤ r ·rs1 ·R(Xs1). Here, rs1 is the minimum probability that all instructions in s1 that affect

variables in X execute correctly, and R(Xs1) is the reliability of variables that flow into X

in s1. However, the check only passes if all instructions in the try block execute correctly

(as they may impact the checker), not just the ones affecting variables in X. Instead of rs1,

the probability that X is calculated correctly via case 1 depends on the probability that all

instructions in s1 execute correctly, which we denote as ps1 (We discuss how to calculate ps1
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in Section 4.4.2). Therefore, the total contribution of case 1 towards the probability that

variables in X are calculated correctly is ps1 · R(Xs1).

Case 2. s1 executes incorrectly and fails the check with probability 1− ps1. Suppose that

running Rely precondition generation on s2 results in the predicate c ≤ r ·rs2 ·R(Xs2). Here,

rs2 is the minimum probability that all instructions in s2 that affect variables in X execute

correctly, and R(Xs2) is the reliability of variables that flow into X in s2. However, case

2 only occurs if s1 produces incorrect results. Therefore, the total contribution of case 2

towards the probability that variables in X are calculated correctly is (1− ps1) · rs2 ·R(Xs2).

Calculating R(X). We can now calculate the total probability that variables in X are

calculated correctly as the sum of the probabilities of the two cases:

R(X) = ps1 · R(Xs1) + (1− ps1) · rs2 · R(Xs2) (4.3)

We extended the reliability predicates with the addition operator following the usual meaning

of addition, since reliability factors denote probabilities over program states [44]. We can

simplify this expression using the following ordering proposition from [44], which states that

for two sets of variables A and B, if B ⊆ A then R(A) ≤ R(B). Therefore,

R(X) = ps1 · R(Xs1) + (1− ps1) · rs2 · R(Xs2)

≥ ps1 · R(Xs1 ∪Xs2) + (1− ps1) · rs2 · R(Xs1 ∪Xs2)

≥ (ps1 + (1− ps1) rs2) · R(Xs1 ∪Xs2)

(4.4)

Following the subsumption rules in [44, Proposition 2], we can replace R(X) with this

probability in the postcondition to get the precondition:

c ≤ r (ps1 + (1− ps1) rs2) · R(Xs1 ∪Xs2) (4.5)

We present the proof of soundness in Section 4.6. Note that some variables in X may not

be read or written to by either block. Such variables become part of Xs1 ∪Xs2 unchanged,

following Rely’s precondition generation rules.

4.4.2 Minimum Probability of Success of s1

The check function ensures complete correctness of the execution of the try block. Recall

that rs1 is the probability that s1 does not make any error that affects the variables tracked
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by the postcondition (X). We must separately calculate the probability ps1 that the try

block executes without any error and therefore satisfies the check. For example, suppose the

try block contains the statements y = x [p0] 0 and z = x [p1] 0. If the postcondition only

tracks the correctness of y, then rs1 only depends on p0. However, the checker also ensures

that z is correct. Therefore, ps1, the probability that the check passes, also depends on p1.

To compute ps1, we consider all possible control flow paths within the try block. If a

control flow path has multiple probabilistic choice statements with correct execution prob-

abilities p1, p2, . . . , pn, then the probability that that path as a whole executes correctly is

equal to their product. Finally, ps1 is the minimum of the products over all paths.

4.4.3 Simplifying the Preconditions of s1 and s2

In Section 4.4.1, we assumed that the Rely precondition generation algorithm generated a

simple precondition of the form c ≤ r · rs1 · R(Xs1) for s1. In general, the Rely precondition

generation algorithm may generate multiple precondition conjuncts from the postcondition.

When generating preconditions for s1 or s2 for Aloe’s analysis, we can combine the precon-

dition conjuncts into a single precondition that subsumes the original precondition conjuncts

using Rely’s subsumption rules (Proposition 2 of [44]).

Suppose we have the following precondition for s1:

c ≤ r11 · R(X11) ∧ c ≤ r12 · R(X12) ∧ . . . c ≤ r1n · R(X1n) (4.6)

Similarly, suppose we have the following precondition for s2:

c ≤ r21 · R(X21) ∧ c ≤ r22 · R(X22) ∧ . . . c ≤ r2n · R(X2n) (4.7)

Using the subsumption rule, we can replace s1’s precondition with c ≤ r · rs1 · R(Xs1) and

s2’s precondition with c ≤ r · rs2 · R(Xs2), such that

rs1 = min(r11, r12, . . . , r1n) rs2 = min(r21, r22, . . . , r2n) (4.8)

Xs1 = X11 ∪X12 ∪ . . . , X1n Xs2 = X21 ∪X22 ∪ . . . , X2n (4.9)

4.4.4 Example: Redo as Recovery

Simply re-doing the computation that experienced an error is a common recovery pat-

tern. In Figure 4.10, the left side shows the analyzed code, and the right side shows Aloe’s

generated preconditions for the postcondition 0.99 ≤ R({x}). The try-check-recover block
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1 try {

2 x = y [p1] rand();

3 } check (f(x, y))

4 recover {

5 x = y [p2] rand();

6 }

7→

1 {0.99 ≤ (ps1 + (1− ps1)p2)R({y})}
2 try { /* ps1 = p1 */

3 {0.99 ≤ p1 · R({y})}
4 x = y [p1] rand();

5 {0.99 ≤ R({x})}
6 } check (f(x, y))

7 recover {

8 {0.99 ≤ p2 · R({y})}
9 x = y [p2] rand();

10 {0.99 ≤ R({x})}
11 }

12 {0.99 ≤ R({x})}

Figure 4.10: Example: recovering with a perfect checker via redo

Table 4.1: check function correctness probabilities

check function detects error? Yes No

s1 experiences error p
TP

p
FN

s1 does not experience error p
FP

p
TN

increases the reliability of x from p1 · R({y}) to (p1 + (1− p1)p2) · R({y}). Similarly, Aloe’s

analysis shows that repeating the calculation in the try block on the same hardware at most

n times upon detecting errors can increase the reliability of x to (1 − (1 − p1)n) · R({y}).
Such precise reliability calculations cannot be done with existing methods such as Rely.

4.5 RELIABILITY ANALYSIS: IMPERFECT CHECKER

Aloe’s reliability analysis can also be extended to check functions that fail to capture all

errors, or detect spurious errors. We specify the characteristics of imperfect check functions

through their false positive probability (p
FP

) and false negative probability (p
FN

). We define

them in Table 4.1, together with the probabilities of true positives (p
TP

) and true negatives

(p
TN

). These probabilities impact the overall reliability of try-check-recover blocks.

4.5.1 Precondition Generator

Consider the same program and postcondition c ≤ r · R(X) as in Section 4.4. Figure 4.11

shows the tree of possible executions of the try-check-recover block for an imperfect checker.

In this case, there are three possible execution paths through the try-check-recover block

that result in a correct calculation of variables in X.

1. s1 executes correctly and the checker passes: This case is similar to case 1 for the
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s1

check

s2
7 r(1− ps1)p

TP
(1− r2)R(X2)error (1− r2)

3 r(1− ps1)p
TP
r2R(X2)no error (r2)

fail (p
TP )

7 r(1− ps1)p
FN
R(X1)pass (pFN)error (1− ps1)

check

s2
7 rps1pFP (1− r2)R(X2)error (1− r2)

3 rps1pFP r2R(X2)no error (r2)

fail (p
FP )

3 rps1pTNR(X1)pass (pTN)

no erro
r (ps1

)

Figure 4.11: Probabilities for imperfect checkers

perfect checker. However, the check can still fail with probability p
FP

.

2. s1 executes correctly but the checker fails, and s2 executes: This case consists of

situations where an error free execution is classified as having an error.

3. At least one instruction in s1 executes incorrectly, the checker fails and indicates an

error, and s2 executes: This case is also similar to case 2 for the perfect checker.

However, the check can still pass with probability p
FN

.

As before, we start with the postcondition c ≤ r · R(X) and combine the preconditions

generated independently for s1 and s2.

Case 1. Suppose that running Rely precondition generation on s1 results in the predicate

c ≤ r·rs1 ·R(Xs1). The statement s1 executes correctly and the check passes with probability

ps1 · pTN . If these two events occur, then the probability that X is calculated correctly only

depends on the reliability of variables flowing into variables in X that are updated in s1

(R(Xs1)). The probability that these two events occur and variables in X are calculated

correctly in the first scenario is therefore ps1 · pTN · R(Xs1).

Case 2. Suppose that running Rely precondition generation on s2 results in the predicate

c ≤ r · rs2 ·R(Xs2). The statement s1 executes correctly but the check fails with probability

ps1 · pFP . If these two events occur, then s2 is run, so the probability that X is calculated

correctly is rs2 ·R(Xs2). The probability that these two events occur and variables in X are

calculated correctly in the second scenario is therefore ps1 · pFP · rs2 · R(Xs2).

Case 3. s1 executes incorrectly and the check fails with probability (1 − ps1)p
TP

. If

these two events occur, then s2 is run, so the probability that X is calculated correctly is
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1 try {

2 x = y [p1] rand();

3 } check (f(x, y))

4 recover {

5 x = y [p2] rand();

6 }

7→

1 {0.99 ≤ (ps1pTN + ps1pFP p2
2 +(1− ps1)pTP p2)R({y})}
3 try { /* ps1 = p1 */

4 x = y [p1] rand();

5 } check (f(x, y))

6 recover {

7 x = y [p2] rand();

8 }

9 {0.99 ≤ R({x})}

Figure 4.12: Example: recovering with an imperfect checker via redo

rs2 · R(Xs2). The probability that these two events occur and variables in X are calculated

correctly in the third scenario is therefore (1− ps1) · p
TP
· rs2 · R(Xs2).

Calculating R(X). We can now calculate the total probability that variables in X are

calculated correctly as the sum of the probabilities of the three cases.

R(X) = ps1 · pTN · R(Xs1) + ps1 · pFP · rs2 · R(Xs2)

+ (1− ps1) · p
TP
· rs2 · R(Xs2)

(4.10)

Using the ordering preposition, we simplify this as follows:

R(X) ≥ ps1 · pTN · R(Xs1 ∪Xs2) + ps1 · pFP · rs2 · R(Xs1 ∪Xs2)

+ (1− ps1) · p
TP
· rs2 · R(Xs1 ∪Xs2)

R(X) ≥ (ps1pTN + ps1pFP rs2 + (1−ps1)p
TP
rs2) · R(Xs1 ∪Xs2) (4.11)

We replace R(X) in the postcondition with this probability to get the precondition:

c ≤ r·
(
ps1pTN + ps1pFP rs2 + (1−ps1) p

TP
rs2

)
·R(Xs1 ∪Xs2) (4.12)

4.5.2 Example: Imperfect Checkers

The example in Figure 4.12 shows the effect of an imperfect checker f on reliability pre-

condition generation. We use the same naming convention as in Table 4.1. Aloe’s analysis

shows that while the overall reliability of the computation is sensitive to the presence of

imperfect check functions, using checkers still significantly improves the reliability over the

unchecked computation.
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4.5.3 Classes of Imperfect Checkers

There are three main classes of imperfect checkers. The first class are those executed

on unreliable hardware, just like the try and recover blocks. Consequently, the checker

itself may execute incorrectly. The simplest example is where the check performs the same

computation as in the try block and compares the results.

The second class of imperfect checkers are randomized computations called property check-

ers [182]. Property checkers identify all incorrect results (p
FN

= 0), but may fail to identify

a correct result (p
FP

> 0).

The third class of imperfect checkers use machine learning to infer a function f’ that

approximates the perfect checker f using data about valid input/output correlations for the

computation in the try block (e.g., outlier detection [74] or DNN checkers [135]). For such

checkers, we can estimate the probabilities p
FP

and p
FN

from the checker’s results on the

training and testing data. However, these estimates are only valid if the inputs to the try

block have a similar distribution as the training and testing data. If this is not the case,

we can use AxProf (Chapter 2) to statistically check the reliability of the program with the

out-of-distribution inputs to see if it is lower than the reliability calculated by Aloe. If so,

this indicates that we must train a new checker for such inputs.

4.6 CORRECTNESS OF RELIABILITY PRECONDITION GENERATION FOR
TRY-CHECK-RECOVER

Theorem 4.1. If 1) pt is the minimum success probability of stry, 2) p
TN

, p
FP

, and p
TP

are the

true negative, false positive, and true positive rates of the checker function f respectively,

3) stry and srec are idempotent and perform the same computation, and 4) the relations

ψ |= {c ≤ rrtR(Yt)} stry {c ≤ rR(X)} and ψ |= {c ≤ rrrR(Yr)} srec {c ≤ rR(X)} hold true,

then, ψ |= {c ≤ rstcrR(Yt ∪ Yr)} try {stry} check {f} recover {srec} {c ≤ rR(X)}, where

stcr = ptpTN + ptpFP rr + (1− pt)pTP rr.

Proof. To prove Theorem 4.1, we first replace the precondition of stry with c ≤ rptR(Yt∪Yr)
and that of srec with c ≤ rrrR(Yt ∪ Yr). As pt ≤ rt and Yt, Yr ⊆ Yt ∪ Yr, this is a sound

replacement (Proposition 2 of [44]).

The variables in X and Yt ∪ Yr fall into one of three categories:

1. Variables that are neither read nor written to by the try and recover blocks.

2. Variables that are read by the try and recover blocks.

3. Variables that are written to by the try and recover blocks.
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The variables in Category 1 are transferred from the postcondition’s joint reliability pred-

icate to the precondition’s joint reliability predicate unchanged, as per Rely’s precondition

generation rules. Aloe’s idempotency requirement ensures that Categories 2 and 3 are mu-

tually exclusive; otherwise, variables written to in the current execution would affect future

executions. Any variables that are both read by and written to by the try and recover

blocks must be internal temporary variables invisible to the rest of the program.

Let ε, ϕ be the environment and environment distribution before executing the try-check-

recover block, and ε′, ϕ′ be the environment and environment distribution after executing the

try-check-recover block. By definition, JR(X)K(ε′, ϕ′) =
∑

εu∈E({X},ε′) ϕ
′(εu). We consider

two ways in which we can reach an environment in which variables in X are calculated

correctly (E({X}, ε′)):

1. We start from an initial environment in which variables in Yt have been calculated

correctly, execute the try block, which calculates the variables in X correctly, and

then the check passes.

2. We start from an initial environment in which variables in Yr have been calculated

correctly, execute the try block, fail the check, and then execute the recover block,

which calculates the variables in X correctly.

The total probability of reaching a state in E({X}, ε′) is the sum of the probabilities of

these two cases. For simplification, we can soundly replace Yt, Yr in the two cases with

Yt ∪ Yr. Then we assume we start from an environment in E({Yt ∪ Yr}, ε). By definition,

JR(Yt ∪ Yr)K(ε, ϕ) =
∑

εu∈E({Yt∪Yr},ε) ϕ(εu).

Case 1. From the precondition / postcondition of the try block in isolation, we know that∑
εu∈E({X},ε′) ϕ

′(εu) ≥
∑

εu∈E({Yt∪Yr},ε) ϕ(εu)× pt. Within the try-check-recover block, after a

correct execution of the try block, the check passes with probability p
TN

. Therefore, the

contribution of this case is
∑

εu∈E({Yt∪Yr},ε) ϕ(εu)× pt × pTN .

Case 2. From the precondition / postcondition of the recover block in isolation, we know

that
∑

εu∈E({X},ε′) ϕ
′(εu) ≥

∑
εu∈E({Yt∪Yr},ε) ϕ(εu)×rr. Within the try-check-recover block, for

this case, the check must fail. This happens in two ways: either the try block executes

correctly and the check fails, or the try block causes an error and the check fails. The first

sub-case happens with probability ptpFP and the second sub-case with probability (1−pt)pTP .

Therefore the contribution of this case is
∑

εu∈E({Yt∪Yr},ε) ϕ(εu)× rr × (ptpFP + (1− pt)pTP ).

The idempotency constraint ensures that rr is unaffected by the try block’s probability of

experiencing an error.
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Table 4.2: Aloe benchmark details

Lines of code

Benchmark Source Kernel Total Unrolled Input

PageRank CRONO [183] 20 45 720K 10 iterations, 1000 node graph
Scale Chisel [36] 57 79 561K 512× 512 image (baboon.ppm)
BScholes Chisel [36] 81 97 270K 4000 options from Parsec [184]
SSSP CRONO [183] 22 31 800K 1000 node graph
BFS CRONO [183] 14 30 720K 1000 node graph
SOR Chisel [36] 24 37 1500K 10 iterations, 1000× 1000 array
Motion Rely [44] 14 32 150K 1000× 1000 array
Sobel AxBench [185] 34 45 160K 10 blocks, 1600 pixels each

Combining the two cases. Adding up the probabilities of the two cases of the try-check-

recover block execution, we finally get

∑
εu∈E({X},ε′) ϕ

′(εu) ≥
∑

εu∈E({Yt∪Yr},ε) ϕ(εu)× pt × pTN
+
∑

εu∈E({Yt∪Yr},ε) ϕ(εu)× rr × (ptpFP + (1− pt)pTP )∑
εu∈E({X},ε′) ϕ

′(εu) ≥
∑

εu∈E({Yt∪Yr},ε) ϕ(εu)(pt × pTN + rr × (ptpFP + (1− pt)pTP )) (4.13)

That is, JR(X)K(ε′, ϕ′) ≥ JR(Yt ∪ Yr)K(ε, ϕ)(pt × pTN + rr × (ptpFP + (1− pt)pTP )).

QED.

4.7 METHODOLOGY

Benchmarks. To evaluate Aloe, we implemented a set of benchmarks from several appli-

cation domains. These benchmarks can tolerate some error in their output and have been

previously explored in approximate computing literature. Table 4.2 presents benchmark

statistics, including the benchmark suite from which we obtained the benchmark (Column 2),

the size of the computation kernel, full benchmark, and the unrolled program (Columns 3-5),

and the input size (Column 6). The line counts exclude setup and I/O code. We briefly

describe each benchmark below:

• PageRank: Computes the PageRank [186] for nodes in a graph

• Scale: Creates a bigger version of an image

• BScholes: Computes the prices of a portfolio of stock options

• SSSP: Computes the Single Source Shortest Path in a graph
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• BFS: Performs a Breadth First Search in a graph

• SOR: Uses Successive Over-Relaxation to model an iterative process

• Motion: A pixel block search algorithm from the x264 video encoder

• Sobel: The Sobel edge-detection filter

Unreliable operations. We used probabilistic choice statements to simulate two different

unreliable architectures where arithmetic operations can fail and produce an incorrect output

with probability 10−3 and 10−4 respectively. That is, the reliability of arithmetic operations

in the two architectures is 0.999 and 0.9999 respectively. We executed each benchmark with

a runtime library that would randomly replace the result of arithmetic operations with an

incorrect value based on the error probability of the architecture.

Specifications and checkers. Each benchmark has at least one try-check-recover block.

The try block executes on the architecture where arithmetic operators have reliability 0.999.

The recover block executes the same code on the more reliable architecture where arithmetic

operators have reliability 0.9999. For perfect checkers, we assumed a hardware technique

with support for detecting errors [63, 75, 181]. For imperfect checkers, we used multiple

false-positive and false-negative values in the range of those explored in Topaz [74].

Environment. We ran all experiments on a computer with an Intel Xeon 3.6GHz CPU

with 32 GB RAM that was running Ubuntu 18.04. We used ANTLR for parsing and Python

as the backend for Aloe. For empirical evaluation, we added instrumentation to track the

number of errors and the end-to-end error magnitude.

4.8 EVALUATION

4.8.1 Static Reliability Analysis: Perfect Checkers

Table 4.3 shows the reliability postcondition we verified for each benchmark kernel in

the presence of a perfect checker. Column 2 shows the verified reliability postcondition for

the benchmark kernel and Column 3 indicates if Aloe was able to verify the bound (3)

or not (7) along with the runtime. Column 4 shows if the same bound could be verified

through a naive Rely analysis that treats the try-check-recover statement as an if-then-

else statement as discussed in Section 4.1.2, along with the runtime. Table 4.4 shows the

reliability postcondition we verified for each end-to-end benchmark in the same format.
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Table 4.3: Verified kernel reliability postconditions

Benchmarks Kernel postcondition Aloe Rely

PageRank 0.9999 ≤ R(newPagerank) 3(3ms) 7(3ms)
Scale 0.9999 ≤ R(newPixel) 3(2ms) 7(2ms)
BScholes 0.9999 ≤ R(optionPrice) 3(3ms) 7(2ms)
SSSP 0.9999 ≤ R(dist) 3(3ms) 7(3ms)
BFS 0.9999 ≤ R(visited) 3(3ms) 7(4ms)
SOR 0.9999 ≤ R(result) 3(1ms) 7(1ms)
Motion 0.9999 ≤ R(MinSSD) 3(45ms) 7(45ms)
Sobel 0.9999 ≤ R(ImageOut) 3(1ms) 7(1ms)

Table 4.4: Verified end-to-end reliability postconditions

Benchmarks E2E postcondition Aloe Rely

PageRank 0.99 ≤ R(PageRank) 3(23.33s) 7(19.73s)
Scale 0.99 ≤ R(ImageOut) 3(10.48s) 7(8.79s)
BScholes 0.99 ≤ R(Prices) 3(6.51s) 7(5.60s)
SSSP 0.99 ≤ R(Distances) 3(18.60s) 7(18.25s)
BFS 0.99 ≤ R(Visited) 3(15.22s) 7(15.14s)
SOR 0.99 ≤ R(ArrayOut) 3(21.02s) 7(17.90s)
Motion 0.99 ≤ R(MinSSD) 3(4.42s) 7(4.19s)
Sobel 0.99 ≤ R(ImageOut) 3(2.10s) 7(1.80s)

The results show that Aloe can verify all reliability bounds, while the Rely approach

fails to do so. When Rely treats the try-check-recover block as an if-then-else statement,

it conservatively considers the lower reliability of the two branches to be the reliability of

the entire statement. In contrast, when using Aloe’s approach with a perfect checker, the

reliability of the try-check-recover block is greater than the reliability of the try and recover

blocks in isolation, since Aloe takes into account the fact that both try and recover blocks

need to produce incorrect results together for an error to be introduced in the output.

For most kernels, the Aloe analysis requires about 3 milliseconds. The Motion kernel

executes a computation for a large number of iterations, leading to increased analysis time

after unrolling. For end-to-end reliability, Aloe’s analysis requires 25 seconds or less.

4.8.2 Static Reliability Analysis: Imperfect Checkers

Table 4.5 shows the maximum reliability that Aloe can verify with imperfect checkers for

the same reliability postconditions for kernels as in Table 4.3. Column 2 shows the highest

reliability that Aloe can verify with a perfect checker. The next columns show the highest

reliability that Aloe can verify with imperfect checkers with a particular true positive (p
TP

)

rate and true negative (p
TN

) rate. For all kernels, the verifiable postcondition reliability

decreases due to the possibility of false classifications by the checker. The reliability of the
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Table 4.5: Maximum verifiable reliability postconditions for kernels with an imperfect checker

Perfect Imperfect

p
TP

: 1.00 p
TP

: 0.95 p
TP

: 1.00 p
TP

: 0.90 p
TP

: 0.80
Benchmarks p

TN
: 1.00 p

TN
: 0.95 p

TN
: 0.95 p

TN
: 0.90 p

TN
: 0.80

PageRank 0.9999 0.9982 0.9968 0.9964 0.9375
Scale 0.9999 0.9993 0.9999 0.9987 0.9976
BScholes 0.9999 0.9992 0.9999 0.9985 0.9971
SSSP 0.9999 0.9995 0.9999 0.9991 0.9982
BFS 0.9999 0.9959 0.9999 0.9994 0.9839
SOR 0.9999 0.9997 0.9999 0.9994 0.9989
Motion 0.9999 0.9912 0.9918 0.8385 0.7031
Sobel 0.9999 0.9995 0.9999 0.9991 0.9982

Table 4.6: Empirical reliability results

Perfect checker No recovery

Benchmarks Error metric Error Fail% Error

PageRank `2 1.54× 10−5 0.7% 4.04× 10−4

Scale PSNR 56.023 dB 0.55% 38.280 dB
BScholes `2 6.26× 10−8 0.15% 4.80× 10−5

SSSP `2 2.82× 10−3 0.1% 4.27× 10−3

BFS `2 0 0.15% 4.25× 10−5

SOR `2 9.25× 10−5 0.75% 1.00× 10−3

Motion SSD 0 0.15% 9.85× 10−4

Sobel `2 2.63× 10−5 0.95% 2.69× 10−5

Motion kernel degrades faster as it executes a large number of iterations that compound the

additional unreliability present as a result of the imperfect checker.

4.8.3 Empirical Results

We empirically confirmed the results of Aloe’s static analysis of end-to-end programs for

a perfect checker. We ran each program 2000 times and calculated the average output error

due to unreliable operations and the fraction of runs where the output was different from a

completely reliable execution. 2000 runs allows us to statistically verify that the empirically

calculated failure rate is less than 0.01 (the verified reliability) using a one-sided binomial

test (α = 0.05, β = 0.2).

Table 4.6 gives the result of the empirical evaluation for each program. Column 2 shows

the error metric we used. We used error metrics that were used in prior work for the same

benchmarks. Columns 3 and 4 show the average output error and the failure rate (percentage

of runs with incorrect results). Column 5 shows the average output error when the program

does not use a recovery mechanism. The average output error is only calculated over runs
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where an error occurred.

The results show that the empirically calculated reliability is always within the bounds

verified by Aloe for a perfect checker. Further, when these benchmarks do fail, the error in the

final output is small, which shows the amenability of these benchmarks to approximations.

For BFS and Motion, the program automatically corrected errors that occurred, without

any additional intervention.

The results also show how the error increased, in some cases significantly, when the pro-

gram did not have a recovery mechanism. Further, in all benchmarks, the failure rate also

exceeded the 1% limit without a recovery mechanism.

4.9 RELATED WORK

Approximate program analyses. Many static analyses have been proposed in recent

years for analyzing approximate or unreliable computations [36, 44, 45, 47, 48, 65, 187, 188,

189]. These existing analyses suffer from imprecision when analyzing computations with re-

covery mechanisms. Our analysis extends Rely by adding additional precondition generation

rules for recovery mechanisms which generate less conservative preconditions compared to

Rely. Dynamic analyses of reliability such as Diamont [46] and FastFlip (Chapter 5) can

provide better reliability bounds for specific inputs to a program. While Aloe’s verifiable

reliability bounds are looser, they are input-agnostic.

FastFlip (Chapter 5) efficiently analyzes programs to determine the likelihood that an error

in any particular instruction will lead to data corruption. FastFlip relies on the assumption

that exactly one error occurs during the execution of the program. In comparison, Aloe

allows for the possibility that multiple errors will occur during the program execution.

Error detection. Hardware error detectors [63, 66, 75, 190] typically consist of special cir-

cuits within the processors and memory units which can detect if an error has occurred. The

accuracy of these detectors is limited by circuit size and energy requirements [75]. Another

approach is to run the same computation on multiple processors at the same time [181, 191]

and report an error if the computations disagree. However this requires a significant amount

of redundant computation and physical space on the processor. Abdulrahman et al. [135]

propose augmenting complex calculations with small neural networks that analyze the input

and output to approximately determine if an error occurred. Topaz [74] uses outlier de-

tection by constructing feature vectors from inputs and outputs. Our approach is agnostic

of the nature of the error detection mechanism. We expose the checker interface (via the
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probabilities of false positives and false negatives) and show how to incorporate both perfect

and imperfect checkers into the analysis.

Recovery mechanisms. Many systems deal with hardware failures using the check-

point/restore method [192], which periodically saves the program state to reliable memory

and restores the program state should an error occur. Languages such as Relax [63] and

Topaz [74] expose recovery mechanisms to the developer. Relax allows retrying the unreliable

computation (on the same unreliable hardware) as well as discarding incorrect calculations.

Topaz instead opts for re-executing the computation on a perfectly reliable hardware or

dropping tasks (following [51]). Several approaches in approximate computing provide im-

plicit recovery from inaccuracy by dynamically adapting the approximation to the input

properties [76, 77, 78, 79]. Containment Domains [193] provide programming constructs to

define various software error detection and recovery mechanisms. Many of these approaches

can be modeled as the types of recovery mechanisms supported by Aloe.

As-Is [194] executes supported approximate programs in a manner such that their accuracy

increases over time. Given sufficient time, the output is exact, but the user can interrupt the

program anytime to get an approximate output to accommodate time constraints. Unlike

As-Is, Aloe aims for specific reliability targets (as opposed to best effort reliability in the

time available) and similarly requires additional runtime to execute the recovery mechanism

when necessary to meet those specific targets.

Fluid [195] relaxes data dependence relations in approximate programs to allow dependent

tasks to execute before the program has calculated the exact value of their inputs. Fluid

allows developers to check the results of such eagerly executed dependent tasks and re-execute

them with exact inputs if the result is unsatisfactory. Aloe supports such an execution

model by representing the eagerly executed task in the try block, with information about

the reliability of the input, and using the developer defined check to determine whether to

execute the recover block with a reliable input.
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Chapter 5: FastFlip

As conventional technology scaling approaches its end, hardware is becoming increasingly

susceptible to errors [4, 9]. Unlike crashes, timeouts, or detectable output corruptions, the

presence of Silent Data Corruptions (SDCs) in program outputs caused by such hardware

errors may not become apparent until long after the program has terminated. Researchers

have proposed various hardware and software techniques to protect programs against SDCs.

Software protection techniques such as instruction or task duplication [70, 71, 72, 196] are

particularly attractive as they can be used on existing hardware. They typically use addi-

tional computational resources to detect SDCs and/or recover from them. To limit their

time and energy overhead, it is necessary to selectively use such techniques on the parts of

the program that are most vulnerable to SDCs.

Finding vulnerable instructions is the task of instruction-level error injection analyses.

These analyses inject errors into different architectural components of a simulated CPU at

various points in a program’s execution, and record the effect of the error on the program

output. For targeted SDC protection, the analysis must provide information on how errors

at each instruction in the program affect the output (e.g., [53, 54]). Such detailed per-

instruction analyses are time-consuming, requiring thousands of core-hours even for small

programs and inputs. While sampling-based tools like [55, 56] are faster, they cannot provide

the necessary vulnerability information for every instruction.

This high cost of per-instruction error injection analysis is concerning because modern

programs are continuously evolving; developers change code to fix bugs, add features, or add

optimizations manually or using compilers. The modified program sections react differently

to errors, so they must be re-analyzed. However, current error injection analyses must

be rerun on the whole program, not just the modified sections, before applying software

protection techniques.

An intuitive solution is to leverage the compositional nature of programs by dividing them

into multiple dynamic sections (such as function calls or executions of code blocks or nested

loops), applying the error injection analysis on each section separately, and then combining

the results. However, such a compositional error injection analysis must overcome multiple

challenges: 1) SDCs in the output of one section must be propagated through downstream

sections to determine the SDCs in the final output of the program, and 2) an error in

one section can corrupt data that will be used only by downstream sections, thus causing

unexpected side effects that do not affect the current section’s output. To the best of our

knowledge, none of the previously proposed analyses (e.g., [54, 55, 58, 59, 197, 198, 199, 200,
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201, 202, 203, 204, 205]) can selectively analyze only the modified parts of the program.

Our work. We present FastFlip, a unique combination of empirical (error injection) and

symbolic (SDC propagation) techniques, which makes it the first approach for compositional

and incremental error injection analysis of evolving programs. Given a program and an input

that FastFlip has not previously analyzed, FastFlip proceeds as follows: First, FastFlip

analyzes the sections of the program for that input with a per-instruction error injection

analysis to determine the outcome of each possible injected error. Second, FastFlip uses a

local sensitivity analysis to determine how each section propagates and amplifies SDCs within

its input, and then uses an SDC propagation analysis to determine how SDCs propagate

across different sections to affect the final output. Third, FastFlip combines the results of the

error injection analysis and the SDC propagation analysis to determine how injected errors

in any section affect the final output. FastFlip uses this information to select a set of static

instructions to protect, such that the dynamic cost of protecting the selected instructions is

minimized, while ensuring that the degree of protection against SDC-causing errors is above

a developer-specified threshold. FastFlip correctly accounts for side effects that only occur

due to errors.

If developers modify a program after FastFlip has analyzed it, FastFlip can reuse large

portions of its analysis results. In particular, FastFlip must only rerun the expensive error

injection analysis on the modified program section, and any downstream sections whose input

changes as a result of the modification. Consequently, FastFlip saves significant analysis time

with each program modification.

We instantiate FastFlip using the Approxilyzer [54] per-instruction error injection anal-

ysis and the Chisel [36] SDC propagation analysis. Approxilyzer focuses on analyzing the

effects of hardware errors that manifest within CPU architectural registers as bitflips. While

analyses exist that also inject errors in other architectural components (e.g., [56]), they rely

on sampling, and would be impractical if used to obtain per-instruction results. We analyze

five benchmarks with FastFlip, each with three or more separately analyzed sections, and

compare against a baseline Approxilyzer-only approach, which treats the entire program as

a single section.

We evaluate the utility of protecting the static instructions selected by FastFlip and Ap-

proxilyzer using two metrics. The value of protecting a selection of instructions is the total

probability that an SDC-causing error will be detected through said protection. The cost of

a selection is roughly equal to the runtime overhead of protecting the selected instructions.

For our evaluation, we use the value and cost model from [68], which assumes that value is

proportional to the number of SDC-causing errors that can occur in the selected instructions,
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and that cost is proportional to the number of dynamic instances of the selected instruc-

tions that must be protected. FastFlip’s selection provides a protection value within 0.3%

(geomean) of the target protection value for a cost of protection within 0.7% (geomean) of

the cost of protecting Approxilyzer’s selection. FastFlip can also use more complex value

and cost metrics to make its selection.

Next, we make two modifications to each benchmark: a small, simple modification and

a large modification that uses a lookup table. FastFlip does not need to inject errors in

the unmodified sections, providing a 3.2× speedup (geomean) over Approxilyzer. Crucially,

FastFlip provides this speedup with minimal additional loss in protection value or increase

in cost with respect to Approxilyzer. We also experiment with a modification that adds

error detection mechanisms to a benchmark; FastFlip is able to efficiently verify that such

a modification significantly decreases the likelihood of SDCs occurring due to errors in the

protected sections.

5.1 BACKGROUND

5.1.1 Error Injection Analyses

Error injection analyses analyze the effect of injecting errors such as bitflips in the program

execution. The analysis first enumerates error injection sites in the correct dynamic trace

of the program execution, which is a sequential list of instructions executed by a program

for a particular input. Depending on the analysis, these error sites can be bits in the source

and destination registers in each instruction, bits in control registers, caches, etc. The

analysis then injects errors at each site one at a time, and then executes the rest of the

program (which may deviate in control flow from the correct execution), to record the effect

of the error on the final output. Such analyses can operate at different levels of abstraction,

including hardware, assembly, and IR (e.g., RAEs [197], Approxilyzer [54], and FlipIt [59]

respectively.). An error can have five possible effects on the output of the program:

• The error is masked, i.e., the program output is unaffected.

• The error causes a program crash, i.e., the program terminates unexpectedly.

• The error greatly extends the program runtime (e.g., by creating a long loop), causing

a timeout.

• The error changes the program output in a detectable manner (e.g., by producing a

misformatted output or an output that is outside the expected range).
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• The error changes the program output in an undetectable manner, i.e., it causes a

Silent Data Corruption (SDC).

For the last case, the analysis typically reports the magnitude of the output SDC, calculated

using an applicable SDC metric. The result of the analysis is a map from each error site

to the outcome of an error at that site. The crash, timeout, and detectable error outcomes

can be handled through detection and recovery mechanisms such as checkpoints. The SDC

outcome is the most dangerous; the presence of an SDC may not be detected until long after

the program has terminated. However, many applications are capable of tolerating small

SDCs up to a threshold magnitude ε. Thus, similar to Approxilyzer, we further categorize

SDCs above this threshold as SDC-Bad and smaller SDCs as SDC-Good.

Some error injection analyses use sampling to inject errors at random points in the program

(e.g., [206, 207]). With a sufficient number of samples, these analyses provide statistically

significant information on the relative frequencies of the above outcomes. Other error injec-

tion analyses aim to provide information on the outcome of error injections at all potential

error sites of a particular class within a program’s execution (e.g., [53, 54]). These non-

sampling analyses are slower, but FastFlip can use their detailed results to find optimal

static instructions to protect against SDCs.

5.1.2 SDC Propagation Analyses

SDC propagation analyses propagate SDCs present in a program’s input, or SDCs that

occur during program execution, to calculate their effect on the program’s final output.

These can be either forward analyses, or backward analyses (e.g., Diamont [46] and Chisel [36]

respectively), which propagate SDC bounds in the respective directions through the program.

An SDC bound ∆(o) ≤ f(∆(i)) states that the SDC in the output o of a section of code,

calculated by an appropriate SDC metric ∆, is bounded by a function f of the SDC in the

input i.

Sensitivity analysis. Sensitivity analysis [208] is a component of SDC propagation analy-

ses that is used to determine how a section of code amplifies SDCs in its input. In particular,

local sensitivity analysis focuses on determining the effect of perturbations around a single

input value.

A local sensitivity analysis varies an input x0 to a program section s by various amounts

ϕ up to some maximum perturbation ϕmax . The analysis executes s to calculate the output

perturbation and divides it by the input perturbation to calculate the SDC amplification
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factor K, which is the Lipschitz constant for s at x0:

K = max
ϕ≤ϕmax

|s(x0 + ϕ)− s(x0)|
ϕ

(5.1)

If the program is differentiable, it may be possible to analytically calculate K via static

analysis (e.g., [209, 210]). In the general case, we can approximate K by sampling a set of ϕ

values. Increasing the number of samples increases the quality of the approximation of K,

though the rate of convergence also decreases, leading to diminishing returns.

5.1.3 Protecting Against SDCs in Software

Software techniques for protecting against SDCs have the advantage that they can be used

on existing, non-specialized hardware. While systems can detect crashes and detectable

errors (e.g., incorrectly formatted outputs) with relatively lightweight mechanisms, SDCs

are harder to detect by nature. Detecting SDCs typically involves re-executing parts of the

program and comparing the outcomes. Coarse grained solutions re-execute entire tasks [86,

211, 212], while fine grained solutions re-execute individual instructions or small blocks of

instructions [70, 71, 72, 196].

Duplicating tasks or instructions does not necessarily double the program’s resource usage.

SWIFT [70] shows how instruction reordering by the compiler and the CPU can reduce

the runtime cost of instruction duplication to an average of 41% of the program’s original

runtime. DRIFT [71] checks the results of multiple duplicated instructions at once to further

increase instruction level parallelism and reduce the runtime overhead to 29% on average.

We can also choose to selectively protect only the instructions that are most vulnerable

to SDCs. We can use error injection analyses that inject errors in all instructions [53, 54]

to find such vulnerable instructions and selectively protect them. Each instruction has

a value/cost tradeoff associated with it: the cost of protecting a static instruction using

instruction duplication is roughly proportional to the number of dynamic instances of the

instruction that will have to be duplicated, while the value is roughly proportional to the

likelihood that an error that causes an SDC will occur in that instruction.

5.2 EXAMPLE

Lower-Upper decomposition (LU) is a key matrix operation that is used to solve systems

of linear equations and to compute the matrix inverse or determinant. The blocked LU

decomposition algorithm improves performance by dividing the matrix into blocks and pro-
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cessing a small fraction of blocks at a time. The algorithm consists of an outer loop whose

loop body has four logical sections:

1. The algorithm decomposes a block B on the matrix diagonal

2. The algorithm updates blocks below B in the matrix

3. The algorithm updates blocks to the right of B in the matrix

4. The algorithm updates blocks below and to the right of B

Given the widespread use of LU decomposition, it is inevitable that hardware errors will

occasionally occur in large computations that use this operation. While memory can be

protected using ECC, data in registers is more vulnerable. If a bitflip error causes a de-

tectable effect, then the software can be restarted or a previous checkpoint can be reloaded.

However, if a bitflip causes an SDC, the corruption may not be detected until much later.

Thus, we wish to protect the program against SDCs using techniques such as instruction

duplication [70, 71, 72].

We can use an error injection analysis like Approxilyzer [54, 199] to analyze the effect of

bitflips on the full program, and use the results to guide protection against SDCs. However,

if developers modify one section of the program during development (e.g., to add opti-

mizations), then we must rerun the analysis on the full modified program, which requires

thousands of core-hours even for simple programs. We cannot naively re-analyze only the

modified section with Approxilyzer, because the modified section most likely responds dif-

ferently to injected errors, which leads to a different distribution of injection outcomes at

the end of the full program.

To solve this issue, we present FastFlip, a compositional approach for error injection

analysis of programs. FastFlip first separately analyzes each section of the program using

Approxilyzer (to determine the effects of errors occurring within that section) and a local

sensitivity analysis (to determine how the section propagates existing SDCs). FastFlip then

combines the analysis results for each section using Chisel [36], an SDC propagation analysis,

to calculate the end-to-end SDC characteristics of the program. Lastly, FastFlip uses these

results to find optimal instructions to protect against SDCs.

We demonstrate the FastFlip approach on the blocked LU decomposition implementation

from the Splash-3 benchmark suite [213] for a sample 16×16 input matrix with an 8×8 block

size. Minotaur [180] has shown this input configuration to be sufficient for 100% program

counter coverage. We assume that a single bitflip occurs during the program execution at

an error site chosen uniformly at random from the program’s correct dynamic trace within

an architectural register.
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Per-section analysis. FastFlip first runs Approxilyzer on each section s of the full pro-

gram execution T . Approxilyzer determines the effect of injecting a bitflip into each bit in

each register in each dynamic instruction in s on the output of s, and stores these outcomes

for use in later steps. For SDC outcomes, FastFlip also stores the SDC magnitude, which is

the maximum absolute error among all output elements of s.

Besides the SDC caused by bitflips, sections can also propagate and amplify SDCs caused

by bitflips in previous sections. For example, FastFlip calculates that if the input to the

first section in the second iteration of the outermost loop (s2,1) has a pre-existing SDC of

magnitude ∆(is2,1), and no bitflips occur within s2,1, then the SDC in the output of s2,1 will

be at most 3.2∆(is2,1).

Under the single bitflip error model, a section s may either propagate an existing SDC

from a previous section, or the bitflip may occur within s, but not both. Therefore, we can

write the total SDC specification for the output of s as the sum of the propagated SDC and

the SDC due to a bitflip within s. For example, using the results from Approxilyzer and the

sensitivity analysis, FastFlip calculates the following upper bound on the effective SDC in

the output of s2,1 (∆(os2,1)) as a function of the SDC in the input of s2,1 (∆(is2,1)) and the

SDC potentially introduced by a bitflip in s2,1 (ϕs2,1):

∆(os2,1) ≤ 3.2∆(is2,1) + ϕs2,1 (5.2)

Calculating end-to-end SDC specifications. FastFlip provides the total SDC spec-

ifications for all sections to Chisel, along with a specification of how data flows between

sections. Using this information, Chisel calculates the end-to-end SDC propagation specifi-

cation for the full LU decomposition computation:

∆(ofin) ≤ 4174.8ϕs1,1 + 434.3ϕs1,2 + 28.8ϕs1,3 + 3.2ϕs1,4 + ϕs2,1 + ϕs2,2 + ϕs2,3 + ϕs2,4 (5.3)

where ϕsx,y represents the SDC potentially introduced into the output of section y in iter-

ation x by a bitflip in that section (sx,y). The coefficient of each ϕsx,y represents the total

amplification of an SDC introduced by a bitflip in sx,y by sections downstream of sx,y. Un-

der the single bitflip error model, only one of the ϕsx,y variables can be nonzero at a time.

FastFlip uses this end-to-end SDC propagation specification to propagate SDCs caused by

bitflips in each section up to the final output.

Selecting instructions to protect. FastFlip adapts the value and cost model from [68]

to select a set of optimal instructions to protect against SDCs. FastFlip associates each
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Figure 5.1: Protection value (left) and cost (right) comparison. Note the strong overlap
within each plot.

static instruction pc in the program with a value of protecting it; this is the number of SDC-

causing bitflips that can occur at pc. Similarly, FastFlip associates each static instruction

pc with a cost of protection; this is the number of dynamic instances of pc in the program

execution. We assume that the value and cost of protecting a set of instructions is the sum

of the value and cost of protecting each instruction in the set. Given a target total SDC

protection value, FastFlip aims to select a subset of instructions that meet this target while

also minimizing the total protection cost. This is a 0-1 knapsack optimization problem,

which FastFlip solves via the standard dynamic programming approach.

Comparison and target adjustment. We compare FastFlip’s results to those of a base-

line Approxilyzer-only approach. This baseline approach performs an error injection analysis

of the whole program at once and uses the results to determine which instructions to protect.

Using the results of the baseline analysis, we can calculate FastFlip’s achieved value, which

is the value of protecting FastFlip’s selection of instructions according to the error injection

outcomes of the baseline analysis. If FastFlip’s achieved value is below the target value,

FastFlip adjusts the target upwards, so that its selection of instructions to protect for this

adjusted target will successfully achieve the original target value.

5.2.1 Results

Value. The left plot in Figure 5.1 shows the value of protecting FastFlip’s selection of

instructions against SDCs. The X-Axis shows the target value over the range [90%, 100%].
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The Y-Axis shows the achieved value. The solid blue line shows FastFlip’s achieved protec-

tion value (after target adjustment), which overlaps the dotted black line showing the target

value. FastFlip successfully achieves (or slightly overshoots) the target protection value for

the entire range of targets. Even without target adjustment, FastFlip undershoots the target

by less than 0.1%.

Cost. The right plot in Figure 5.1 compares the cost of protecting FastFlip’s selection of

instructions against the cost of protecting the Approxilyzer baseline’s selection. The red

dashed line and solid blue line show the cost using Approxilyzer and FastFlip’s results,

respectively; the two lines visually overlap. The maximum excess of cost of FastFlip over

Approxilyzer is below 0.1%, even after target adjustment.

Modifications. FastFlip enables compositional analysis by splitting the full program Ap-

proxilyzer analysis into multiple sections. We demonstrate the benefits of compositional

analysis by performing both analyses on two modified versions of this program. The small

modification uses a specialized version of section 4 of the program which reduces the number

of bounds checks when the matrix size is a multiple of the block size (as is the case for our

input). The large modification replaces the first section with a lookup table. Unlike the

Approxilyzer-only approach, which must inject errors in the full execution of the modified

program, FastFlip only needs to inject errors in the modified section of the program, saving

considerable time. FastFlip also reuses the adjusted targets that it found for the original

version of the program. FastFlip continues to achieve the original target values with these

adjusted targets, and the excess of cost of FastFlip over Approxilyzer stays below 0.3%.

Analysis time. FastFlip requires 694 core-hours to analyze the original version of the

program, compared to 602 core-hours for Approxilyzer. This slowdown is due to Approx-

ilyzer’s ability to prune injections across multiple sections of the computation by forming

large equivalence classes. FastFlip cannot prune injections to a similar extent, as it ana-

lyzes each section independently. However, FastFlip saves a significant amount of time when

subsequently analyzing the modified versions of the program. For analyzing the program

with the small modification, FastFlip requires 80 core-hours as opposed to 625 core-hours

for Approxilyzer. Similarly, for analyzing the program with the large modification, FastFlip

requires 94 core-hours as opposed to 441 core-hours for Approxilyzer. This shows that Fast-

Flip is useful when analyzing programs that evolve over time, because it saves analysis time

with each modification.

FastFlip enables efficient target adjustment by simultaneously running the Approxilyzer
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Figure 5.2: The FastFlip approach. Green boxes with dashed outlines and bold text are
initial inputs and final results. Blue boxes with dashed outlines and normal text are inter-
mediate results. Pink boxes with solid outlines and bold text are steps executed by FastFlip.
Orange boxes with solid outlines and normal text are steps executed by the sub-analyses.
The dotted box shows the portion of the approach that is applied to each section.

baseline analysis while performing its own analysis. For the original version of the program,

the overhead of this simultaneous approach is less than 1% of the FastFlip-only analysis

time. Since FastFlip reuses the adjusted targets for the modified versions, it does not need

the simultaneous approach for those versions.

5.3 THE FASTFLIP APPROACH

Figure 5.2 visualizes the FastFlip approach. First, FastFlip performs two sub-analyses on

each program section s (a function call or one execution of a code block or loop nest marked

by the developer) in the full program execution T :

• FastFlip uses a supported error injection analysis4 to determine the effect of each

possible error in s and stores the outcome.

• FastFlip uses a local sensitivity analysis to obtain an SDC propagation specification

for s, and converts it into a total SDC specification for s.

Second, FastFlip runs a supported SDC propagation analysis4 over T , using each section’s to-

tal SDC specification, to obtain the end-to-end SDC propagation specification for T . Third,

FastFlip calculates concrete end-to-end SDC magnitudes to find the probability of an SDC-

Bad outcome associated with each static instruction; this corresponds to the value of pro-

tecting said static instruction. Finally, FastFlip selects a set of instructions to protect with

SDC detection mechanisms that minimizes the total cost of protection, while also ensuring

that the total value of the protection is above a developer-defined threshold.

4 We describe the characteristics of supported error injection and SDC propagation analyses in Sec-
tion 5.3.10.
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5.3.1 Preliminaries

As in previous works [53, 54], FastFlip assumes that 1) the program’s input is SDC-free

and 2) exactly one error occurs during the execution of the full program. This error can be

a single or multi-bit corruption within one dynamic instruction.

Definitions. We use the following symbols:

• T : full program execution

• s: program section (typically a function call or one execution of a code block or loop

nest); s ∈ T

• J : set of all error injection sites in T

• Js: set of all error injection sites in s; Js ⊆ J

• Os(j): effect of an error injection j on the outputs of s, as calculated by the error

injection analysis

• is,0, . . . , is,m and os,0, . . . , os,n: inputs and outputs of s

• iT,0, . . . , iT,m and oT,0, . . . , oT,n: inputs and outputs of T

• fs,k, fT,λ, fT,λ,s: SDC propagation specifications calculated by the local sensitivity anal-

ysis, the SDC propagation analysis, and FastFlip respectively

• ϕs,k, ϕ∗,∗, ϕs,∗, ϕs̄,∗: symbolic variables (or sets thereof) for SDCs introduced into sec-

tion outputs by errors

• p(j): probability that the error occurs at j ∈ J

• PC(j): maps j ∈ J to the corresponding static instruction

• ελ: maximum acceptable SDC for output oT,λ of T

• v(pc): value of protecting static instruction at pc

• c(pc): cost of protecting static instruction at pc

• pcprot: set of static instructions selected for protection
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Analysis inputs. FastFlip accepts the full program T , its partition into sections s, a

specification of how data flows between sections, the probabilities p(j), SDC limits ελ, and

protection cost c(pc) as inputs. Developers can obtain the dataflow specification using stan-

dard compiler analysis passes. Expert developers can also input this data manually.

5.3.2 Error Injection Analysis of Program Sections

FastFlip runs an error injection analysis on each program section s ∈ T to determine the

effect of injected errors on the outputs of s, and stores the outcome. If an injection j causes a

detectable outcome, such as a crash, timeout, or any clearly out-of-bounds or misformatted

output, then the outcome Os(j) = detected. Otherwise, the outcome Os(j) = {r0, r1, . . . , rn},
where rk is the magnitude of SDC (as measured by an application-specific metric) caused by

the injection j in output os,k of s. If the injection is masked for an output os,k, then rk = 0.

5.3.3 SDC Propagation Analysis of Program Sections

FastFlip performs a local sensitivity analysis on each program section s ∈ T to calculate

how it amplifies SDCs present within its input. The local sensitivity analysis produces an

SDC propagation specification for s of the general form:

n∧
k=0

∆(os,k) ≤ fs,k(∆(is,0), . . . ,∆(is,m)) (5.4)

that is, for each output os,k of s, the specification provides the SDC bound ∆(os,k) calculated

as a function fs,k of the SDC bounds of the inputs of s.

To convert this SDC propagation specification to a total SDC specification, FastFlip adds

symbolic variables ϕs,k to represent the magnitude of SDC introduced into the output os,k

during the execution of s as a result of an error. Under the single error model, if the input to

s already contains an SDC, then the error occurred in a previous program section, hence s

cannot introduce additional SDC. Thus, for each output of s, we can simply write the total

SDC as the sum of the SDC due to an error in s and the SDC propagated by s from its

input to its output. This is the total SDC specification for s:∧
k

∆(os,k) ≤ fs,k(∆(is,0), . . . ,∆(is,m)) + ϕs,k (5.5)
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5.3.4 End-to-End SDC Propagation Analysis

FastFlip runs an SDC propagation analysis on the full program T . FastFlip provides

the analysis with the total SDC specifications from Equation 5.5 for each s ∈ T . The

analysis also uses the developer-provided dataflow specification indicating how outputs of

one section flow into the inputs of a subsequent section. The SDC propagation analysis uses

this information to calculate the relationship between errors that occur anywhere in T to

the SDC in the final outputs of T . This is the end-to-end SDC propagation specification for

T and has the form:

n∧
λ=0

∆(oT,λ) ≤ fT,λ(∆(iT,0), . . . ,∆(iT,m), ϕ∗,∗) (5.6)

where ϕ∗,∗ is the list of the symbolic SDC variables across all sections. Because we assume,

as in previous work [54], that the initial inputs to the program are free of SDCs, we can

simplify fT,λ as follows: ∧
λ

∆(oT,λ) ≤ fT,λ(ϕ∗,∗) (5.7)

Next, we create specialized versions of fT,λ by noting that, under the single error model, the

symbolic SDC variables for only one section can be nonzero at a time:

fT,λ,s(ϕs,∗) = fT,λ(ϕs,∗, ϕs̄,∗ = 0) (5.8)

where ϕs,∗ is the list of the symbolic SDC variables for section s and ϕs̄,∗ is the list of

the symbolic SDC variables for all other sections. Finally, we rewrite the end-to-end SDC

propagation specification as:

j ∈ Js ⇒
∧
λ

∆(oT,λ) ≤ fT,λ,s(ϕs,∗) (5.9)

Equation 5.9 states that, if FastFlip injects an error in section s, then the upper bound on

the SDC in output oT,λ of T is fT,λ,s(ϕs,∗), a function of the magnitude of SDC in the outputs

of s.

5.3.5 Calculating the Value of Protecting Static Instructions

FastFlip uses the injection outcomes (Section 5.3.2) and Equation 5.9 to answer the follow-

ing question: For each static instruction identified by its program counter pc in the full execu-
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tion T , what is the total probability5 of error injections that result in SDC-Bad (|SDC| > ελ)

for any output oT,λ of T? The value of protecting pc with SDC detection mechanisms is

proportional to this total probability.

Algorithm 5.1 Finding the value of protecting a static instruction

Input T , Js, PC(j), Os(j), ελ, p(j): defined in Section 5.3.1; fT,λ,s: SDC propagation
specification from outputs of s to output oT,λ of T
Returns ∀pc. v(pc): value of protecting the static instruction pc

1: v ← { ∀pc. pc 7→ 0 }
2: for s in T do
3: for j in Js do
4: pc← PC(j)
5: if Os(j) 6= detected then
6: if ∃λ. fT,λ,s(Os(j)) > ελ then
7: v(pc)← v(pc) + p(j)

8: vtotal = Σpcv(pc)
9: ∀pc. v(pc)← v(pc)/vtotal

Algorithm 5.1 shows how FastFlip calculates the value v(pc) of protecting a static instruc-

tion pc. For each error injection in each section, FastFlip checks if the error results in a

detectable outcome. If not, FastFlip uses Equation 5.9 to calculate upper bounds on the

SDCs in the outputs of T as a function of the SDCs in the outputs of s. If any SDC is

SDC-Bad, FastFlip adds the probability of that error to the value of protecting pc. Lastly,

FastFlip rescales the values so that the total value of protecting all static instructions is

equal to 1.

5.3.6 Finding an Optimal Set of Instructions to Protect

The value v(pc) of protecting the static instruction pc calculated using Algorithm 5.1 and

the corresponding protection cost c(pc) together comprise a value and cost model similar to

the one from [68]. FastFlip uses v(pc) and c(pc) as inputs to a 0-1 knapsack optimization

problem. FastFlip assumes that the value and cost of protecting a set of instructions is the

sum of the value and cost of protecting each instruction in the set. Given a developer-defined

target total protection value vtrgt, FastFlip solves the knapsack problem via the standard

dynamic programming approach to select a set of static instructions pcprot to protect that

5This is the probability that the error occurs within pc and the outcome is SDC-Bad, as opposed to the
conditional probability that the outcome is SDC-Bad when the error occurs in pc.
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minimizes the total protection cost:

Minimize
∑

pc∈pcprot

c(pc) such that
∑

pc∈pcprot

v(pc) ≥ vtrgt (5.10)

FastFlip then efficiently selects the optimal pcprot for a range of vtrgt values. This corre-

sponds to solving the value / cost multi-objective optimization problem using the ε-constraint

method [214] (i.e., turning one of the objectives into a constraint as we do above) to obtain

Pareto-optimal choices for pcprot.

5.3.7 Precision of FastFlip

We observed that there are four major factors that affect the precision of FastFlip:

Inter-section masking. Inter-section masking occurs when an SDC in one section is

masked by a downstream section. FastFlip must conservatively assume that SDCs introduced

in any section result in SDCs in the final outputs. The frequency of inter-section masking is

highly dependent on the application.

Imprecision of component analyses. As FastFlip depends on the results of the error

injection analysis and the SDC propagation analysis, any imprecision in these analyses can

lead to imprecision in FastFlip. For example, in our evaluation, FastFlip is affected by:

• The error injection analysis’s injection pruning heuristics, which make per-instruction

error injection practical at the cost of introducing some inaccuracy in the injection

outcomes [54, Figure 5]

• The SDC propagation analysis’s conservative SDC propagation, which causes it to

overestimate the magnitude of SDC at the end of the program

Side effects. FastFlip requires each analyzed program section to be free of side effects. If

a section modifies a variable that is used by a downstream section, then that variable must

be considered as an output of that section. Even after all such variables are included in the

output, the section may still cause additional side effects as a result of errors. Below, we

describe two major categories of observed side effects that occur exclusively due to errors,

along with the strategies employed by FastFlip to account for them.

First, the error may cause the section to write to a memory location outside the memory

region where the section’s output is stored (e.g., due to incorrect array index calculation or
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evaluation of a loop exit condition). As a result, it is possible for the outputs of the section

to be correct while data in memory locations adjacent to the outputs is corrupted. This

data may be used by downstream sections, leading to a side effect. FastFlip mitigates this

effect by considering variables stored in memory locations adjacent to the section outputs

to be an output of that section.

Second, the error may corrupt variables that will no longer be used by the current section,

but are used in downstream sections (e.g., due to the corruption of a register being popped

from the stack at the end of a section). FastFlip mitigates this effect by including variables

that will be used by future sections in the output of the current section, even if the current

section only reads said variables. FastFlip uses the dataflow specification provided by the

developer to find such variables.

While these mitigation strategies eliminate a large majority of side effects introduced as

a result of errors, some such side effects can still occur. As a result of these remaining side

effects, the outcomes of some of the injections recorded by FastFlip may be incorrect.

Untested error sites. A small number of error sites in the full program may not be

included in any program section. For example, if sections are executed multiple times within

an outer loop, then the instructions which increment the outer loop counter and restart the

outer loop body may be excluded from all program sections. FastFlip conservatively assumes

that, if an error occurs at such an excluded error site, then it will always produce an SDC-

Bad outcome. More rigorously, FastFlip creates an imaginary section s⊥ containing all such

untested error sites j and assumes that ∀j ∈ Js⊥ , Os(j) = {∞, . . . ,∞}. This reduces the

precision of FastFlip, as the actual number of SDC-Bad outcomes for these untested error

sites is often lower.

5.3.8 Adapting FastFlip to Compensate for Loss of Precision

If FastFlip loses precision as a result of the factors described in Section 5.3.7, it can lead

to a loss of utility. That is, a loss of precision can cause FastFlip to protect against a smaller

number of errors that cause SDC-Bad outcomes than expected. Similarly, it can also increase

the cost of protecting FastFlip’s selection of static instructions beyond the actual minimum

cost of protection. FastFlip adaptively adjusts the target value vtrgt used in Section 5.3.6 in

order to compensate for this loss of utility.

Measuring utility. FastFlip must first measure its loss of utility. FastFlip compares its

utility to the utility obtained via a baseline monolithic error injection analysis. The baseline
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analysis injects errors in the whole program at once and directly determines the outcome

of these errors at the end of the program. It then uses these results to selectively protect

vulnerable static instructions. FastFlip uses two primary metrics for measuring utility:

First, FastFlip treats the outcome labels of the monolithic error injection analysis as the

ground truth and calculates the value of protecting its selection against SDC-Bad outcomes

according to these alternate outcome labels. FastFlip refers to the protection value of its

selection calculated in this manner as the achieved value vachv. FastFlip then compares vachv

to the target protection value vtrgt. FastFlip calculates the loss of value as vloss = vtrgt−vachv.

Value loss measures the degree to which FastFlip undershoots the target value of protection

against SDC-Bad outcomes; a lower value loss is better.

Second, FastFlip calculates the excess cost of FastFlip’s selection over the monolithic error

injection analysis’s selection. Specifically, if the costs associated with protecting the two

selections of instructions against SDCs are cFF (for FastFlip) and cMono (for the monolithic

analysis) respectively, the excess cost is cexcess = cFF−cMono. Excess cost measures the degree

of inefficiency of FastFlip’s selection for protecting against SDC-Bad outcomes as compared

to the more efficient selection made by the monolithic analysis; a lower excess cost is better.

When analyzing a program, FastFlip can simultaneously run the monolithic error injection

analysis for minimal additional analysis time6. To do so, FastFlip simultaneously checks the

effect of each error in each section both on the outputs of that section, as well as the final

outputs. Using these two sets of outcome labels, FastFlip can calculate vloss and cexcess.

Adjusting the target value. FastFlip replaces the original target vtrgt with an adjusted

target v′trgt. Let the achieved value for this adjusted target be v′achv. FastFlip minimizes v′trgt

such that v′achv ≥ vtrgt. If v′trgt > vtrgt, then the cost of protecting FastFlip’s selection increases,

with larger adjustments leading to larger increases. It is also possible that v′trgt < vtrgt, in

which case the cost decreases instead.

5.3.9 Composability and Incremental Analysis

When developers modify a program section, FastFlip must rerun the error injection and

local sensitivity analysis on the modified program section and any downstream sections

whose input changes as a result of the modification. FastFlip can reuse the results of these

sub-analyses for all other sections. Lastly, FastFlip must recalculate the end-to-end SDC

propagation specifications using the SDC propagation analysis. Since running the error

injection analysis is the major contributor to FastFlip’s runtime, this approach leads to

6For our evaluation, we run the analyses separately for proper comparison of their analysis time.
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significant speedups as compared to rerunning the error injection analysis on the full modified

program, even if FastFlip must re-analyze multiple sections due to modifications that change

the inputs of downstream sections.

Algorithm 5.2 Using adjusted target values when programs are modified

Input Padj: target adjustment interval; madj: number of modifications since last target
adjustment; vtrgt: original target value; v′trgt: adjusted target value
Modifies madj; v

′
trgt

Returns pcprot: selection of instructions to protect
1: if madj ≥ Padj then
2: madj ← 0
3: OutcomesFF,OutcomesMono ← FastFlipAndMonolithic(Program, Input)
4: v′trgt ← AdjustTarget(vtrgt,OutcomesFF,OutcomesMono)
5: else
6: madj ← madj + 1
7: OutcomesFF ← FastFlipModifiedOnly(Program, Input)

8: pcprot ← Knapsack(v′trgt,OutcomesFF)

Algorithm 5.2 shows how FastFlip uses target value adjustment to compensate for loss

of utility (Section 5.3.8) when the program is modified. FastFlip maintains a count of the

number of modifications that have occurred since the most recent target adjustment (madj).

If madj is below a threshold chosen by the developer (Padj), FastFlip executes only its own

time saving compositional analysis and uses the existing adjusted target v′trgt to choose a set

of static instructions to protect. That is, it is not necessary to always run the monolithic

analysis as described in Section 5.3.8 for modified programs. As developers make modifi-

cations to the program, v′trgt may no longer provide the expected compensation for loss of

utility. For this reason, once madj ≥ Padj, FastFlip re-adjusts the target value by performing

a fresh analysis of the whole program while simultaneously running the monolithic analysis.

Developers can choose Padj to trade off between utility loss and analysis time.

5.3.10 Characteristics of Usable Sub-Analyses

Error injection analyses. The error injection analysis must separately report the out-

come for errors in each instruction in the program that the developer may wish to protect

(e.g., [53, 54]). Analyses that use sampling and only report overall outcome statistics for the

program (e.g., [55, 56]) are incompatible with FastFlip, as they do not provide instruction-

specific vulnerability information. The analysis may inject single or multi-bit errors into one

dynamic instruction per simulation.
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SDC propagation analyses. The SDC propagation analysis must support the same

application-specific SDC magnitude metric that the error injection analysis and the sen-

sitivity analysis use to report the SDC magnitude. The analysis must also support the

propagation of SDCs whose magnitude is represented by a symbolic variable, to enable the

calculation of Equation 5.9. Examples of supported analyses are Chisel [36] and DeepJ [210].

5.4 METHODOLOGY

5.4.1 Choice of Sub-Analyses

Approxilyzer. Approxilyzer [54] is an error injection analysis that focuses on single bitflip

errors that occur in CPU registers within in each dynamic instruction in a program execu-

tion. It uses various heuristics to form equivalence classes of bitflips that will most likely

cause similar outcomes. Approxilyzer injects a bitflip into the program execution for only

one pilot from each equivalence class. It then continues the now tainted program execution

(with possibly incorrect control flow), and records the outcome of the bitflip. Finally, Ap-

proxilyzer applies the outcome of this pilot bitflip to all members of the equivalence class.

We specifically use gem5-Approxilyzer [199].

Chisel. Chisel [36] is an SDC propagation analysis that calculates the end-to-end SDC

propagation specification functions fT,λ,s as affine functions of the symbolic SDC variables7

ϕs,∗ (Equation 5.9). Chisel generates conservative specifications because it assumes that

1) each program section always amplifies input SDCs by the maximum amplification factor

for that section for any input, and 2) when input SDCs can propagate through multiple

control flow paths, they are always affected by the maximum amplification factor among all

these paths, regardless of the actual path that the program execution takes.

5.4.2 Error Model

As we compare FastFlip’s results to those of an Approxilyzer-only approach, we use the

same error model as Approxilyzer (described below) to ensure a fair comparison. We inject

one single-bit transient error per simulation in an architectural general purpose or SSE2

register. We target both source and destination registers in dynamic instructions within

the region of interest (a subset of the correct dynamic trace of the program execution for a

7We modified Chisel to add support for such symbolic SDC variables.

103



Table 5.1: List of benchmarks for FastFlip

Benchmark Input size Sections |J |

BScholes 2 options 4 (×2) 36.7K
Campipe 32× 32 5 (×1) 72.7M
FFT 256× 2 5 (×1) 9.23M
LU 16× 16 4 (×2) 1.75M
SHA2 32 bytes 3 (×1) 403K

particular input), and skip instructions without register operands. We do not inject errors in

special purpose, status, and control registers (e.g., %rsp, %rbp, and %rflags) as we assume

that they always need protection which can be provided by hardware. Similarly, we assume

that caches are protected via hardware techniques like ECC. As in previous works (e.g., [55,

215]) we assume that the probability p(j) that the error will occur at any error site j follows

a uniform distribution.

5.4.3 SDC Detection Model

SDC detection mechanism. We assume that a compiler pass (e.g., [70, 71]) duplicates

the instructions that FastFlip selects for protection and then follows the original and dupli-

cate instructions with a check that ensures that their results match. The duplicated code

execution and increased register pressure leads to runtime overhead. However, by allow-

ing the compiler and CPU scheduler to rearrange instructions and by coalescing multiple

checks together, the overhead for extensive instruction duplication across the program can

be reduced to 29% on average [71]. The overhead for selective duplication of individual

instructions is even lower.

Value and cost of SDC detection. We adapt the value and cost model from [68],

described below. Since the error model in Section 5.4.2 assumes that errors are uniformly

distributed (p(j) is uniform), the value of protecting a static instruction pc is proportional

to the number of distinct errors possible in pc that produce an SDC-Bad outcome. The

cost c(pc) of protecting pc is proportional to the number of dynamic instances of pc in the

program execution trace. Developers can use alternate value models by changing the error

probability distribution p(j) and alternate cost models by changing c(pc).
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5.4.4 Benchmarks

Table 5.1 shows our benchmarks for FastFlip. Column 2 shows the input size, Column 3

shows the number of static sections (and the number of dynamic instances of those sections),

and Column 4 shows the total number of error sites (|J |). We briefly describe the benchmarks

and their origin below:

• BScholes : Black-Scholes stock option analysis benchmark from the PARSEC suite [184]

• Campipe: The raw image processing pipeline for the Nikon-D7000 camera, adapted

from [216]

• FFT : Fast Fourier Transform benchmark from the Splash-3 suite [213]

• LU : Blocked matrix decomposition benchmark from the Splash-3 suite [213]

• SHA2 : The SHA-256 hash function, adapted from [217]

For FFT and LU, the input size is the same as the minimized input size found by Mino-

taur [180], a technique for reducing injection analysis time by minimizing inputs without

sacrificing program counter coverage. For BScholes, we manually reduced the 21 option

minimized input found by Minotaur down to 2 options while ensuring that the program

counter coverage remained the same. For Campipe, we use a reference 32 × 32 raw image

input provided along with the implementation. For SHA2, we use a common cryptographic

key size (256 bits).

5.4.5 Baseline, Comparison, and Experimental Setup

Software and hardware. FastFlip uses gem5-Approxilyzer version 22.1 [199] simulating

an x86-64 CPU as the architecture simulator. We performed our experiments on AMD Epyc

processors with 94 error injection experiment threads.

Region of interest. We focus on the computational portion of each benchmark and do

not analyze I/O, initial setup, or final cleanup code.

SDC magnitude metric. We use the maximum element-wise absolute difference as the

SDC magnitude metric for all benchmarks. Specifically, if ok[`] represents the `th element

of an output ok and the modified output due to an injection is ôk, then the SDC metric is

max` |ok[`]− ôk[`]|.
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SDC-Bad threshold. We first analyze all benchmarks assuming that any SDC is SDC-

Bad, no matter how small (∀λ. ελ = 0). Next, we relax this requirement by considering SDC

magnitudes up to 0.01 to be tolerable, i.e., SDC-Good (∀λ. ελ = 0.01) for all benchmarks

except SHA2 (whose applications require the output to be fully precise).

Sensitivity analysis parameters. As we consider the maximum tolerable SDC magni-

tude ελ to be 0.01, we use this as the maximum perturbation during sensitivity analysis.

To estimate the Lipschitz constant K, we perform 106 random perturbations up to ελ. For

array inputs, we randomly perturb one, multiple, or all elements.

Comparison metrics. We compare the performance and utility of FastFlip to a baseline

monolithic Approxilyzer-only approach. The baseline approach treats the entire program as a

single section. For performance, we compare the analysis times of FastFlip and Approxilyzer.

For comparing utility, we compare the selections of instructions to protect made by the

two approaches using the value loss and excess cost metrics described in Section 5.3.8.

FastFlip always uses target adjustment in our evaluation, except in Section 5.5.4, where

we investigate the effects of target adjustment. We compare utility for four target values:

vtrgt ∈ {0.90, 0.95, 0.99, 1.00}, which are target values that correspond to protecting against

90%, 95%, 99%, and 100% of errors that cause SDC-Bad outcomes, respectively.

Error range. While Approxilyzer’s use of equivalence classes as described in Section 5.4.1

speeds up analysis, the pilot is not a perfect predictor of the outcomes for the pruned

injections (i.e., the rest of the equivalence class). Figure 5 in Approxilyzer [54] shows that,

on average, 4% of pruned injections have an outcome that is significantly different from the

pilot. Therefore, Approxilyzer’s results cannot be considered to be the absolute ground truth

for comparison.

To account for the potential discrepancy between the ground truth and Approxilyzer,

we calculate an error range around the value of SDC protection according to Approxilyzer.

Using the detailed results from Approxilyzer or FastFlip, we can determine, for each error

site, 1) whether the outcome is SDC-Bad, or a different outcome, and 2) whether an injection

was actually performed at that error site, or the error site was pruned (the outcome for an

error at that site was inferred from the outcome for another error site in the same equivalence

class). Additionally, each error site can either be protected or unprotected, depending on

whether the analysis selected the corresponding static instruction for protection.

Based on these classifying factors, we can divide all error sites into eight categories, and

use a variable to represent the number of error sites in each of these categories, as shown in
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Table 5.2: Variables representing the number of error sites in various categories for error
range calculation

Injected Pruned

Outcome: SDC-Bad Other SDC-Bad Other

Protected A B C D
Unprotected E F G H

Table 5.2. Lastly, let R be the rate of outcome misprediction for pruned error sites. Using

the above information, we can calculate the lower and upper bounds on the actual value of

protecting the selected instructions:

vmin =
A+ (1−R)C

A+ (1−R)C + E +G+RH

vmax =
A+ C +RD

A+ C +RD + E + (1−R)G

(5.11)

Then, the value error range is the interval [vmin, vmax]. Note that using the above notation,

the value calculated in Section 5.3.6 is equal to:

vcalc =
A+ C

A+ C + E +G
(5.12)

which always lies within [vmin, vmax].

For FFT, LU, and BScholes, we use the benchmark-specific pilot prediction inaccuracy

from Figure 5 in Approxilyzer [54] (3%, 4%, and 10% respectively). For Campipe and SHA2,

we consider the average inaccuracy from the same figure (4%).

We calculate FastFlip’s error range in this manner around its results for achieved pro-

tection value. If, for this error range, vmax ≥ vtrgt, then we consider FastFlip’s result to be

acceptable, even if vachv is less than vtrgt.

Analysis time. For FastFlip, the total time required is the sum of the time required for

1) analyzing each program section with Approxilyzer and the sensitivity analysis, 2) Chisel

error propagation analysis, 3) calculating the value of protecting static instructions, and

4) solving the knapsack problem. For modified benchmarks, we do not include the time

required to analyze the unmodified sections in the first category. For Approxilyzer, the total

time required is the sum of the time required for 1) analyzing the full program and 2) solving

the knapsack problem.
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Timeouts. FastFlip assumes that if the error causes the runtime of a program section to

exceed 5× the nominal runtime, then the execution times out, which is a detected outcome.

We use the same timeout rule for Approxilyzer.

5.4.6 Program Modifications

To test the advantages offered by FastFlip’s compositional analysis, we modify one or more

sections within each benchmark. Then, we re-analyze the full modified program with Ap-

proxilyzer, and compare this to FastFlip’s re-analysis of only the modified sections followed

by SDC propagation.

For each benchmark, we experiment with two types of semantics-preserving modifications.

Small modifications represent simple modifications that developers or compilers may make

while optimizing and maintaining the program. Such modifications of up to 15 lines of code

form a majority of open-source commits [218]. For the large modifications, we replace a

program section with a lookup hashtable. The hashtable stores key-value pairs that map

inputs of that section to corresponding outputs. If the modified section finds the current

input in this table, it returns the corresponding output. Otherwise, it executes the original

section code. Lastly, for the BScholes benchmark, we also experiment with a modification

that uses coarse-grained code duplication to detect the presence of SDCs.

Details of small modifications. For Campipe and FFT, we store an expression used

in multiple locations within the section into a variable to improve code readability. For

LU, we introduce a specialized version of a section that reduces the number of necessary

bounds checks when it detects that the matrix size is a multiple of the block size (as is

the case for our input). For BScholes, we eliminate a redundant floating point operation

that occurs in some cases in the cumulative normal distribution function. This change very

slightly changes the semantics of the section due to floating point imprecision. For SHA2,

we similarly eliminate a redundant shift operation (without changing semantics or making

the runtime input-dependent).

5.5 EVALUATION

5.5.1 Similarity of Injection Outcomes of FastFlip and Approxilyzer

Table 5.3 shows how injection outcome statistics compare between FastFlip and the base-

line Approxilyzer approach for the benchmarks without modifications. Column 2 shows
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Table 5.3: Injection outcome counts for unmodified benchmarks

Outcome counts

Benchmark Approach Detected SDC Masked

BScholes
Approxilyzer 6.14K 19.1K 11.5K

FastFlip 5.87K 19.6K 11.3K

diff -274 +503 -229

Campipe
Approxilyzer 29.0M 11.1M 32.6M

FastFlip 29.8M 18.2M 24.8M

diff +749K +7.09M -7.84M

FFT
Approxilyzer 3.53M 4.22M 1.48M

FastFlip 3.53M 4.40M 1.31M

diff -7.61K +178K -170K

LU
Approxilyzer 878K 809K 65.4K

FastFlip 879K 815K 56.8K

diff +1.43K +6.50K -8.57K

SHA2
Approxilyzer 65.2K 318K 19.9K

FastFlip 64.5K 319K 19.8K

diff -698 +798 -100

the approach and Columns 3-5 show the number of detected, SDC, and masked outcomes,

respectively. The counts for the modified benchmarks have a similar trend.

The clearest difference in the outcome counts is the lower number of masked outcomes

and the higher number of SDC outcomes identified by FastFlip. This is often the result

of errors that cause an SDC in the output of a program section, which is then masked

by a downstream section. Because FastFlip checks for SDCs the output of each section and

conservatively assumes that SDCs in a section’s output always propagate to the final output,

it cannot identify such inter-section masking. This is especially visible for Campipe, whose

last section is a nearest-value lookup table that masks many SDCs from upstream sections.

For LU and BScholes, FastFlip does not analyze a small number of error sites that are

related to the iteration of the outer loop containing the analyzed program sections. As

described in Section 5.3.7, FastFlip conservatively assumes that errors at these untested

error sites always lead to SDC-Bad outcomes. As a result, FastFlip may select such untested

instructions for protection even if errors in them do not result in SDCs.
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Table 5.4: Comparison of FastFlip and Approxilyzer utility when all SDCs are unacceptable
(SDC-Bad). A 3 indicates that the achieved value is within the value error range of FastFlip.

vtrgt = 0.90 vtrgt = 0.95 vtrgt = 0.99

Benchmark Modif. Value Cost (diff) Value Cost (diff) Value Cost (diff)

BScholes
None 0.9013 0.635 (+0.000) 0.9503 0.717 (+0.000) 0.9903 0.827 (+0.000)
Small 0.8993 0.634 (+0.003) 0.9503 0.713 (+0.000) 0.9903 0.821 (+0.000)
Large 0.8983 0.669 (+0.000) 0.9493 0.753 (+0.000) 0.9913 0.849 (+0.000)

Campipe
None 0.9153 0.611 (+0.038) 0.9503 0.676 (+0.017) 0.9913 0.807 (+0.024)
Small 0.9243 0.611 (+0.060) 0.9543 0.678 (+0.030) 0.9903 0.807 (+0.034)
Large 0.9123 0.760 (+0.068) 0.9613 0.819 (+0.043) 0.9933 0.899 (+0.015)

FFT
None 0.9003 0.544 (+0.011) 0.9503 0.629 (+0.002) 0.9903 0.780 (+0.000)
Small 0.9043 0.542 (+0.010) 0.9503 0.629 (+0.004) 0.9903 0.781 (+0.002)
Large 0.9003 0.492 (+0.001) 0.9503 0.586 (−0.000) 0.9873 0.716 (−0.016)

LU
None 0.9003 0.603 (+0.000) 0.9503 0.694 (+0.000) 0.9903 0.873 (+0.000)
Small 0.9013 0.606 (+0.002) 0.9513 0.698 (+0.002) 0.9903 0.875 (+0.001)
Large 0.9023 0.560 (+0.002) 0.9513 0.640 (+0.003) 0.9903 0.826 (−0.001)

SHA2
None 0.9003 0.666 (+0.001) 0.9503 0.772 (+0.000) 0.9903 0.908 (+0.001)
Small 0.9003 0.665 (+0.000) 0.9493 0.771 (−0.001) 0.9903 0.908 (+0.000)
Large 0.8833 0.476 (−0.007) 0.9433 0.551 (−0.003) 0.9853 0.655 (−0.007)

5.5.2 Utility of FastFlip Compared to That of Approxilyzer

Table 5.4 compares the utility of FastFlip and Approxilyzer for selective protection of

instructions against SDCs, using the metrics described in Section 5.3.8. Columns 1-2 show

the benchmark name and version, respectively. Subsequent pairs of columns show the utility

comparison for the target protection values 0.90, 0.95, and 0.99, respectively. In each col-

umn pair, the first column shows FastFlip’s achieved protection value. The second column

shows the cost of protecting FastFlip’s selection, and compares this to the cost of protecting

Approxilyzer’s selection.

With target adjustment, FastFlip successfully meets all target values for the original,

unmodified version of each benchmark. Because FastFlip reuses the adjusted targets for the

modified versions as described in Algorithm 5.2, it may not precisely meet the target for

those modified versions. The maximum difference between the target and achieved values

is 0.017 (1.7%) for SHA2-Large. In all cases, the target value is within FastFlip’s achieved

value error range (Section 5.4.5).

For most benchmarks, the cost of protecting FastFlip’s selection of instructions is at most

0.011 (1.1%) more than the cost of protecting Approxilyzer’s selection. The exception is

Campipe, for which FastFlip’s cost can be higher by as much as 0.068 (6.8%). This is

because, unlike the other benchmarks, FastFlip has to aggressively adjust the target values

for Campipe in order to compensate for the loss of precision caused by inter-section masking

and meet the original target values. Section 5.5.4 describes the consequences of forgoing

target adjustment.
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Table 5.5: Comparison of FastFlip and Approxilyzer analysis time

Analysis time (core-hours)

Benchmark Modif. FastFlip Approxilyzer Speedup

BScholes
None 69 hrs 65 hrs 0.9×
Small 42 hrs 62 hrs 1.5×
Large 3 hrs 24 hrs 8.4×

Campipe
None 2459 hrs 2631 hrs 1.1×
Small 158 hrs 2720 hrs 17.2×
Large 45 hrs 494 hrs 11.0×

FFT
None 980 hrs 520 hrs 0.5×
Small 300 hrs 509 hrs 1.7×
Large 93 hrs 513 hrs 5.5×

LU
None 694 hrs 602 hrs 0.9×
Small 80 hrs 625 hrs 7.8×
Large 94 hrs 441 hrs 4.7×

SHA2
None 726 hrs 728 hrs 1.003×
Small 718 hrs 726 hrs 1.01×
Large 43 hrs 45 hrs 1.05×

We observed that if we removed the last section of Campipe (which is the primary cause

of high inter-section masking in Campipe), FastFlip’s target adjustments became less ag-

gressive, and the excess cost of FastFlip decreased to 0.036 (3.6%). This suggests that more

precise SDC propagation analyses that also calculate the probability of SDC masking may

help to reduce the need for target adjustment.

The geomean cost of protecting FastFlip’s selection is 0.601, 0.685, and 0.819 for the

target protection values 0.90, 0.95, and 0.99, respectively. This shows that it is possible to

protect against 90% bitflips that cause SDCs by protecting on average 60% of all dynamic

instructions. Protecting against the remaining SDCs quickly leads to diminishing returns.

5.5.3 Performance of FastFlip Compared to That of Approxilyzer

Table 5.5 compares the analysis time of FastFlip (without simultaneously running Approx-

ilyzer) and Approxilyzer. Columns 1-2 show the benchmark name and version, respectively.

Columns 3-4 show the total analysis time for FastFlip and Approxilyzer, respectively. Col-

umn 5 shows the speedup of FastFlip over Approxilyzer. We measure analysis time in

core-hours as the error injection analysis is highly parallelizable. The actual analysis time

is much lower when using a large number of error injection experiment threads.

For FastFlip, over 99% of analysis time is for the error injection analysis. The sensitivity

analysis requires less than five minutes. The symbolic SDC propagation analysis and knap-
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sack problem solver each require less than one minute, even for programs and inputs that

are much larger than our benchmarks.

The two approaches have similar analysis times for the unmodified (None) versions of all

benchmarks except FFT. For FFT, Approxilyzer prunes a larger number of injections since

operations such as transpose are performed multiple times in different dynamic sections of

the program execution. As FastFlip injects errors into each section independently, it cannot

similarly prune injections across sections. However, FastFlip is faster when analyzing the

modified versions of FFT.

To enable target adjustment, FastFlip simultaneously runs the Approxilyzer analysis as

described in Section 5.3.8. We use the methodology from [180, Section 4.7] to confirm that

the time required for this simultaneous approach is at most 1% more than the greater of the

analysis times of FastFlip and Approxilyzer for the unmodified versions of the benchmarks.

For the modified versions, the speedup depends on how much of the original program the

developer replaced. If the modified sections are small with respect to the full program, then

FastFlip must re-analyze only that small modified portion of the program, as opposed to

Approxilyzer which must re-analyze the full modified program. This leads to the particularly

large speedups for Campipe. On the other hand, if the modified sections are a large portion

of the full program, then FastFlip must re-analyze large portions of the program, leading to

smaller speedups. This leads to the negligible speedups for SHA2, where we modified the

most expensive section of the program. As FastFlip reuses the adjusted targets for modified

benchmarks, it only needs to use the simultaneous approach for the original version.

These results show that FastFlip can save a significant amount of analysis time when

analyzing modified programs. For modern software systems that accumulate multiple small

modifications over time, FastFlip can provide ever increasing savings.

5.5.4 Effects of Target Adjustment

Section 5.5.2 presents the results of FastFlip when it uses target adjustment in order to

meet the original targets. For most benchmarks, the adjusted targets are within 0.4% of the

original targets, so the results with and without target adjustment are similar. For Campipe,

FastFlip has to aggressively adjust the target protection value because its characteristics lead

to precision loss.

Table 5.6 compares the utility of FastFlip and Approxilyzer for Campipe with and without

target adjustment. The format is similar to that of Table 5.4, except that Column 1 indi-

cates whether the results are for the original (non-adjusted) target or the adjusted target.

Without target adjustment, FastFlip undershoots the target by as much as 0.052 (5.2%) and
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Table 5.6: Comparison of FastFlip and Approxilyzer utility for Campipe with and without
target adjustment. A 3 indicates that the achieved value is within the value error range of
FastFlip, while a 7 indicates the opposite.

Target type Modif. Value Cost (diff) Value Cost (diff) Value Cost (diff)

vtrgt = 0.90 vtrgt = 0.95 vtrgt = 0.99

None 0.8487 0.542 (−0.031) 0.9203 0.622 (−0.038) 0.9773 0.751 (−0.032)
Original Small 0.8793 0.543 (−0.008) 0.9253 0.623 (−0.025) 0.9803 0.752 (−0.021)

Large 0.8687 0.687 (−0.005) 0.9257 0.776 (+0.001) 0.9793 0.864 (−0.021)

v′
trgt = 0.942 v′

trgt = 0.972 v′
trgt = 0.997

None 0.9153 0.611 (+0.038) 0.9503 0.676 (+0.017) 0.9913 0.807 (+0.024)
Adjusted Small 0.9243 0.611 (+0.060) 0.9543 0.678 (+0.030) 0.9903 0.807 (+0.034)

Large 0.9123 0.760 (+0.068) 0.9613 0.819 (+0.043) 0.9933 0.899 (+0.015)

Table 5.7: Comparison of FastFlip and Approxilyzer utility when SDCs greater than 0.01 are
SDC-Bad. A 3 indicates that the achieved value is within the value error range of FastFlip.

vtrgt = 0.90 vtrgt = 0.95 vtrgt = 0.99

Benchmark Modif. Value Cost (diff) Value Cost (diff) Value Cost (diff)

BScholes
None 0.9003 0.645 (+0.013) 0.9513 0.727 (+0.013) 0.9903 0.821 (+0.000)
Small 0.8983 0.642 (+0.011) 0.9493 0.724 (+0.013) 0.9903 0.821 (+0.000)
Large 0.8923 0.681 (+0.012) 0.9463 0.765 (+0.006) 0.9903 0.849 (−0.012)

Campipe
None 0.9003 0.576 (+0.031) 0.9513 0.674 (+0.032) 0.9913 0.802 (+0.030)
Small 0.9153 0.577 (+0.057) 0.9583 0.674 (+0.054) 0.9923 0.802 (+0.045)
Large 0.9033 0.694 (+0.024) 0.9533 0.780 (+0.018) 0.9923 0.895 (+0.016)

FFT
None 0.9003 0.563 (+0.002) 0.9503 0.687 (+0.004) 0.9903 0.848 (+0.008)
Small 0.9043 0.579 (+0.012) 0.9473 0.684 (−0.006) 0.9893 0.845 (+0.002)
Large 0.8953 0.529 (−0.007) 0.9363 0.625 (−0.028) 0.9793 0.774 (−0.041)

LU
None 0.9003 0.657 (+0.004) 0.9503 0.787 (+0.000) 0.9903 0.932 (+0.002)
Small 0.9063 0.674 (+0.020) 0.9503 0.787 (+0.000) 0.9903 0.932 (+0.000)
Large 0.9033 0.638 (+0.009) 0.9433 0.753 (−0.007) 0.9893 0.884 (−0.002)

the original target value does not always fall within FastFlip’s achieved value error range.

These results demonstrate the importance of target adjustment for ensuring that FastFlip

meets the original protection targets for all benchmarks. However, aggressive target adjust-

ment also leads to an increase in protection cost of FastFlip’s selection of instructions over

Approxilyzer’s selection.

5.5.5 Comparison of FastFlip and Approxilyzer When Small SDCs are Acceptable

Table 5.7 compares the utility of FastFlip and Approxilyzer when small SDCs (≤ 0.01)

are considered acceptable (SDC-Good) and the analyses focus on only protecting against

larger SDCs (SDC-Bad). Table 5.7 has the same format as Table 5.4. We exclude SHA2 for

this evaluation as its applications require the calculated hashes to be fully precise.

FastFlip successfully meets all target values for all benchmarks. The maximum difference
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Table 5.8: Comparison of FastFlip and Approxilyzer utility for protecting against all SDC
outcomes throughout the program execution. A 3 indicates that the achieved value is within
the value error range of Approxilyzer.

vtrgt = 0.99 vtrgt = 1.00

Benchmark Modif. Value Cost (diff) Value Cost (diff)

BScholes
None 0.9903 0.827 (+0.000) 1.0003 0.954 (+0.010)
Small 0.9903 0.821 (+0.000) 1.0003 0.953 (+0.011)
Large 0.9913 0.849 (+0.000) 1.0003 0.958 (+0.024)

Campipe
None 0.9913 0.807 (+0.024) 1.0003 0.900 (+0.002)
Small 0.9903 0.807 (+0.034) 1.0003 0.900 (+0.018)
Large 0.9933 0.899 (+0.015) 1.0003 0.940 (+0.000)

FFT
None 0.9903 0.780 (+0.000) 1.0003 0.971 (+0.022)
Small 0.9903 0.781 (+0.002) 1.0003 0.971 (+0.021)
Large 0.9873 0.716 (−0.016) 1.0003 0.932 (+0.000)

LU
None 0.9903 0.873 (+0.000) 1.0003 0.982 (+0.000)
Small 0.9903 0.875 (+0.001) 1.0003 0.983 (+0.000)
Large 0.9903 0.826 (−0.001) 1.0003 0.932 (+0.000)

SHA2
None 0.9903 0.908 (+0.001) 1.0003 0.989 (+0.000)
Small 0.9903 0.908 (+0.000) 1.0003 0.989 (+0.000)
Large 0.9853 0.655 (−0.007) 1.0003 0.723 (+0.014)

between the target and achieved values is 0.014 (1.4%) for FFT-Large. In all cases, the

target value is within FastFlip’s achieved value error range caused by injection pruning. For

most benchmarks, the cost of protecting FastFlip’s selection of instructions is at most 0.020

(2%) more than the cost of protecting Approxilyzer’s selection. The exception is Campipe,

for which FastFlip’s protection cost is higher by as much as 0.057 (5.7%) due to aggressive

target adjustment.

The geomean cost of protecting FastFlip’s selection is 0.619, 0.720, and 0.849 for the target

protection values 0.90, 0.95, and 0.99, respectively. FastFlip obtains the results in Table 5.7

at the same time as the results in Table 5.4 for negligible additional analysis time (less than

one minute).

5.5.6 Protecting Against All SDC Outcomes

Table 5.8 compares the utility of FastFlip and Approxilyzer for protecting against all

SDC outcomes. The format is similar to that of Table 5.4. Table 5.8 repeats the results for

vtrgt = 0.99 for comparison.

FastFlip achieves a protection value of 1.000 (100%) for vtrgt = 1.00. It is not necessary

(or possible) to adjust this target value. However, for some benchmarks, FastFlip also

selects for protection some instructions for which Approxilyzer found only masked or detected

outcomes. As a result, the overhead of FastFlip’s selection is still slightly higher than that
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1 modifiedCode(input) {

2 output1 = originalCode(input);

3 output2 = originalCode(input);

4 assert(output1 == output2);

5 return output1;

6 }

Figure 5.3: Coarse-grained SDC detection mechanism

Table 5.9: Effect of adding error detection mechanisms to a static section of BScholes

Error outcomes Analysis time (core-hours)

Modif. SDC / Total (%) FastFlip Approxilyzer Speedup

None 2991 / 5536 (54.0%) 69 hrs 65 hrs 0.9×
Error detection 882 / 8960 ( 9.8%) 21 hrs 71 hrs 3.4×

of Approxilyzer’s selection. The geomean cost of protecting FastFlip’s selection is 0.819

and 0.936 for the target protection values 0.99 and 1.00, respectively. There is a significant

increase in the number of dynamic instructions that must be protected to protect against

the last 1% of SDC-causing errors. The results for protecting against all SDC outcomes

whose magnitude is greater than 0.01 are similar.

5.5.7 Case Study: Effectiveness of Error Detection Mechanisms

To verify that error detection mechanisms can reduce the likelihood of SDC outcomes as

a result of errors, we modified one static section of the BScholes benchmark. The modified

section executes the original code twice and compares the output of the two executions. If

the outputs do not match, this indicates that an error occurred, and the program raises an

exception (a detected outcome), as illustrated by the pseudocode in Figure 5.3. We analyze

the effects of errors in the modified section with FastFlip and Approxilyzer to check the

effectiveness of such an error detection mechanism.

Table 5.9 shows the results of adding this error detection mechanism to BScholes. Col-

umn 2 shows the number of SDC outcomes as a fraction of the total error outcomes.

Columns 3-4 show the total analysis time for FastFlip and Approxilyzer, respectively. Col-

umn 5 shows the speedup of FastFlip over Approxilyzer. We find that the modification

significantly reduces the number and fraction of SDC outcomes occurring due to errors in

the modified section; this is despite the increase in code size due to duplication. The re-

maining SDCs occur in 1) non-duplicated instructions at the start or end of the modified

section, or 2) instructions within the first execution of the original code that cause side ef-

fects that affect the second execution too. As with other modifications, FastFlip saves time
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over Approxilyzer because it must only analyze the modified sections of the benchmark.

5.6 RELATED WORK

Error injection-less reliability analyses. ePVF [219] is a dynamic analysis which finds

locations where a bitflip will cause a crash, as opposed to an SDC, with ∼ 90% accuracy.

TRIDENT [57] uses empirical observations of error propagation in programs to predict the

overall SDC probability of a program and the SDC probabilities of individual instructions.

Other works [220, 221] use analytical modeling to detect SDCs in a program. Leto [48]

is an SMT-based fault tolerance analysis that supports multiple error models, including

the single error model. However, it requires precise specifications of program components,

which are cumbersome for large programs when errors can occur at any point. While these

analyses can be faster than error injection analyses, they are less accurate and may not be

able to precisely estimate the magnitude of the output SDC due to an error. FastFlip’s

compositional nature makes error injection analysis more affordable by amortizing the cost

of analyzing evolving programs over time.

Aloe (Chapter 4) statically analyzes programs with potentially imperfect error recovery

mechanisms to determine the overall reliability of the program. Unlike FastFlip, Aloe sup-

ports error models where multiple errors can simultaneously occur during program execution

with varying probabilities. This is a limitation of FastFlip, as the correctness of Equation 5.5

relies on the assumption that only one error occurs during program execution.

Error injection analyses. Error injection analyses operate at different levels of abstrac-

tion, including hardware, assembly, and IR [55, 56, 58, 59, 197, 198, 200, 201, 202, 203, 204,

205]. These analyses typically use sampling - they select a statistically significant number of

error sites at random and only perform error injections at those sites. While this is sufficient

for providing overall outcome statistics as we do in Section 5.5.1, we cannot use such results

to determine which specific instructions or blocks of instructions are particularly vulnerable

to SDCs in order to protect them. However, FastFlip can still use these analyses if they are

modified to perform per-instruction error injection like Approxilyzer [54, 199].

Minotaur [180] reduces the size of inputs required to test the reliability of programs when

subjected to error injections, while keeping the percentage of static instructions evaluated

close to 100% (as compared to the reference input). We use the input sizes proposed by

Minotaur for the FFT and LU benchmarks, and manually minimize the Minotaur-proposed

BScholes input to 2 options without sacrificing instruction coverage. While Minotaur reduces

injection analysis time by reducing input size, the program must still be analyzed in full.
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FastFlip complements Minotaur by adding the flexibility of only re-analyzing small sections

of the program when developers modify it, further reducing analysis time.

Papadimitriou and Gizopoulos [207] show that injecting errors in various SRAM hard-

ware structures can give different results compared to injecting errors at higher levels of

abstraction. AVGI [56] builds on [207] to show that hardware errors manifest in software in

different ways, but result in similar distributions of final outcomes across applications. Using

this insight, AVGI accelerates hardware-level fault injection for large workloads to provide

overall outcome statistics. Santos et al. [222] similarly examine how faults injected at the

RTL level affect common GPU instructions, and inject these instruction-level effects into

applications to provide overall outcome statistics and identify vulnerable hardware compo-

nents. However, FastFlip requires the error injection analysis to report outcomes for errors

at each possible error site, as opposed to summary statistics (Section 5.3.10). The above

analysis techniques that aim to efficiently determine the effect of low-level faults via hybrid

fault injection are too slow even for small program sizes when modified to report outcomes

in the manner required by FastFlip. If future analyses succeed in providing such detailed

outcome information for low-level faults in a scalable manner, FastFlip would be able to use

them to improve the accuracy of its analysis.

SDC propagation analyses. SDC propagation analyses either propagate SDCs forward

through programs [46, 223], or propagate SDC bounds backwards through programs [36,

45, 86]. While we instantiated FastFlip with the Chisel [36] backwards SDC propagation

analysis, the FastFlip approach can instead use any alternate SDC propagation analysis that

satisfies the requirements outlined in Section 5.3.10.

Ashraf et al. [206] analyze the propagation of randomly injected faults in MPI applica-

tions. Using the injection experiment results, they build a model to estimate the number

of memory locations corrupted over time to guide roll-back decisions. Combining FastFlip

with [206] is an attractive opportunity for making per-instruction error injection analysis of

MPI applications practical.

Mutlu et al. [60] predict the effect of bitflips injected into iterative applications on the

final output by analyzing the effects of fault injections on a limited number of iterations.

While this potentially gives [60] an advantage over FastFlip for applications that iterate the

same operation multiple times, unlike FastFlip, [60] cannot handle applications with multiple

sections that perform distinct operations, such as our benchmarks.

Hardware-based selective protection. Researchers have examined the use of selective

hardware hardening (e.g., via redundancy or ECC) for improving hardware reliability while

117



limiting the use of additional chip area [224, 225, 226, 227]. These techniques find and

replicate only those hardware components that, as a result of transient errors, produce un-

acceptable outcomes across the range of typical applications that users are expected to run on

the hardware. The error model we use for FastFlip’s evaluation (Section 5.4.2) also assumes

that caches and certain registers are protected within the hardware. FastFlip efficiently

provides information which can be used to apply additional, software-based selective pro-

tection tailored to the needs of specific applications, as opposed to adding further hardware

protections irrelevant to other applications.

Software-based selective SDC protection. Unlike crashes, timeouts, or clearly invalid

data, SDCs are more difficult to detect by nature. SWIFT [70] uses instruction duplication

to detect errors in computational instructions. To reduce overhead, it makes use of instruc-

tion reordering by the compiler and the processor. DRIFT [71] further reduces overhead

by coalescing the checks of multiple duplicated instructions, which reduces basic block frag-

mentation. SWIFT and DRIFT completely eliminate the possibility of SDCs occurring due

to single bitflip errors in the duplicated computational instructions. nZDC [196] provides

comparable overhead to SWIFT while also protecting programs from 99.6% of SDCs caused

by single bitflip errors during load, store, and control flow instructions.

Shoestring [72] finds and duplicates only particularly vulnerable instructions. Hari et

al. [68] propose protecting blocks of instructions with single detectors placed at the end of

loops or function calls. These two techniques use the results of error injection analyses to

guide selective instruction duplication. We consider such techniques to be clients of Fast-

Flip. They provide FastFlip with information about the runtime overhead of protecting

various instructions or instruction blocks. Our evaluation in fact uses an adapted version

of the value and cost model from [68]. In return, FastFlip provides precise information on

which instructions should be protected in order to minimize runtime overhead while pro-

tecting against a developer-defined fraction of SDC-causing errors. After developers apply

these techniques to protect FastFlip’s selection of instructions, FastFlip can re-analyze the

protected sections to confirm the decrease in SDC vulnerability. For FastFlip, we focused on

efficiently handling program modifications in general. We also briefly explore a modification

that reduces SDC vulnerability via coarse-grained code duplication in Section 5.5.7. Ana-

lyzing sections after applying fine-grained duplication of FastFlip’s selection of vulnerable

instructions is an interesting topic for future work.
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Chapter 6: Conclusion and Future Work

6.1 CONCLUSION

Uncertainty is an unavoidable aspect of modern computations. It is either present within

the inputs themselves, or has to be intentionally introduced to solve otherwise intractable

problems. These computations are capable of tolerating uncertainty to differing extents.

For this reason, researchers have put significant effort into analyzing how uncertainty is

introduced into a computation, how it propagates through it, and how it affects the final

outputs. Researchers have also put effort into designing various techniques for reducing

uncertainty when necessary.

The cost of analyzing the uncertainty in modern computations is further compounded by

the fact that they are continuously evolving not just during development, but also after they

have been deployed in a production environment. Compositional analyses of uncertainty

would help developers by reducing analysis time when incremental changes are made to

a computation, as it would only be necessary to re-analyze modified components when

changes are made. Unfortunately, little work exists that aims to make uncertainty analysis

of computations composable.

In this dissertation, I presented my work that shows that it is possible to analyze uncer-

tainty in computations in a composable manner. First, I described two analyses of critical

components of computations. AxProf is a framework for statistical analysis of approxi-

mate randomized algorithm implementations that ensures that the implementations satisfy

theoretical accuracy constraints. Aloe is a static analysis that determines how recovery

mechanisms protect critical sub-computations from excessive uncertainty.

Second, I described two composable analyses of end-to-end computations. GAS focuses on

simulations of autonomous vehicle systems and separately analyzes the expensive to simulate

perception components. FastFlip accelerates error injection analysis by dividing programs

into sections and using an uncertainty propagation analysis to determine the effect of errors

in each section on the final outputs of the program. By analyzing computations as separable

components, these analyses reduce the cost of analysis over time. Specifically, they reduce

the need to re-analyze unmodified components of computations that evolve over time. In

doing so, these analyses are often able to remain as precise as monolithic, non-composable

analyses of the whole computation.

Inexpensive, composable analysis of uncertainty will enable developers to rapidly test

proposed changes to modern computations to determine their response to uncertainty. Un-
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certainty analysis could become commonplace in regression testing suites for modern com-

putations. The work that I have presented in this dissertation serves as a starting point

towards this goal.

6.2 FUTURE WORK

Supporting application-specific recovery mechanisms in Aloe. Aloe supports re-

covery mechanisms that redo a computation if it detects an error. Aloe can also model other

recovery mechanisms as a re-execution of a computation, such as checkpoint-restore and the

re-evaluation of eagerly executed code that produced unsatisfactory results.

Some applications can employ application-specific recovery mechanisms. For example,

many iterative applications whose output converges to a fixed point can recover from some

types of errors by simply increasing the number of iterations performed. For some other

applications, it may be less expensive to use an alternative algorithm to correct a slightly

erroneous output, than to redo the full computation. Adding support for such custom

recovery mechanisms would increase the applicability of Aloe.

Supporting complex autonomous vehicle tasks in GAS. Our GAS benchmarks

model vehicle systems that perform essential, narrowly-focused tasks. Specifically, the bench-

marks model vehicles that attempt to avoid collisions with other vehicles or landscape fea-

tures. GAS is capable of accurately modeling vehicles performing such tasks.

The latest autonomous vehicles are capable of performing complex, multi-stage tasks such

as navigating across a city. These autonomous vehicle systems have a large and varied state

space, including cameras, LIDAR, GPS, etc. as well as complex internal states. Adding

support for modeling such vehicle systems in GAS could be made possible using the strategies

discussed in Section 3.6.1 and would increase the applicability of GAS.

Testing modifications that implement recovery with FastFlip. FastFlip is designed

to be able to efficiently analyze programs after various types of modifications. We demon-

strate this by analyzing modifications that improve code readability, remove redundant com-

putation, or completely overhaul program components.

We also briefly explore the effectiveness of a modification that uses coarse-grained code

duplication to reduce the likelihood of SDCs. While such a modification does reduce the

likelihood of SDCs, it is inefficient as it protects a block instructions with varying vulnerabil-

ity to SDCs as a single unit. FastFlip’s results enable fine-grained instruction duplication of

a set of instructions that are especially vulnerable to SDCs. After adding such protections,
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we should be able to use FastFlip to verify that the protected instructions are no longer

vulnerable. This would enable a four step procedure in which developers modify a program

section, analyze the modified section with FastFlip to find vulnerable instructions, protect

those instructions, and then verify the protections with FastFlip.

Testing phase-aware protection strategies with FastFlip. In our evaluation of Fast-

Flip, we observed that the same static section of code had varying vulnerability to errors

depending on the current phase of the end-to-end computation. FastFlip currently selects

instructions within a section for protection based on the vulnerability of those instructions

over the course of the whole computation.

An interesting extension of FastFlip would be to select different instructions for protec-

tion at different phases of the computation. This would be achieved by compiling multiple

versions of the same program section and selecting the version to use based on the cur-

rent phase. This could lead to less expensive protection of the end-to-end computation by

targeting instructions for protection based on their phase specific vulnerability to SDCs.

Input-agnostic analysis of programs with FastFlip. If a program executes a static

section of code multiple times with different inputs, FastFlip must analyze each dynamic

instance of that section separately. Similarly, if the developer decides to test the end-to-end

computation with an entirely new input, FastFlip must perform its analysis for every section

from scratch.

For some static instructions in the program, the outcome of certain errors in that in-

struction may be input-agnostic. By analyzing the outcomes for the same error site across

multiple inputs, it may be possible to identify such input-agnostic outcomes. FastFlip can

then skip analyzing these error sites if the input changes at a later point. The advantages

of this approach would be threefold:

• It would speed up FastFlip’s analysis of multiple dynamic instances of the same static

section by reducing the number of error injections that must be performed for later

dynamic sections in the execution.

• It would allow FastFlip to skip some error injections if the developer changes the input

to the end-to-end computation.

• It would enable more efficient analysis of modifications that do not preserve semantics

by reducing the number of error injections that must be performed for downstream

sections whose input changes as a result of the modification.
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[122] S. Misailović, “Accuracy-aware optimization of approximate programs,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 2015.

[123] E. Cohen, “All-distances sketches, revisited: HIP estimators for massive graphs anal-
ysis,” IEEE Transactions on Knowledge and Data Engineering, 2015.

[124] M. Levandowsky and D. Winter, “Distance between sets,” Nature, 1971.

[125] C. Curtsinger and E. D. Berger, “Coz: finding code that counts with causal profiling,”
in Symposium on Operating Systems Principles, 2015.

[126] G. Xu and A. Rountev, “Precise memory leak detection for java software using con-
tainer profiling,” in ACM/IEEE 30th International Conference on Software Engineer-
ing, 2008.

[127] E. Raman and D. I. August, “Recursive data structure profiling,” in Workshop on
Memory system performance, 2005.

[128] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani, “HOLMES: Ef-
fective statistical debugging via efficient path profiling,” in IEEE 31st International
Conference on Software Engineering, 2009.

[129] L. Song and S. Lu, “Statistical debugging for real-world performance problems,” in
Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages & Applications, 2014.

[130] A. Zheng, M. Jordan, B. Liblit, M. Naik, and A. Aiken, “Statistical debugging: Si-
multaneous identification of multiple bugs,” in Proceedings of the 23rd International
Conference on Machine Learning, 2006.

[131] K. Gopinathan and I. Sergey, “Certifying certainty and uncertainty in approximate
membership query structures,” in Computer Aided Verification, 2020.

131

https://github.com/MagnusS/Java-BloomFilter
https://github.com/alabid/countminsketch
https://github.com/AWNystrom/CountMinSketch
https://datasketches.apache.org/
https://github.com/ekzhu/datasketch
https://github.com/alexpreynolds/sample
https://github.com/NumericalMax/Randomized-Matrix-Product
https://github.com/NumericalMax/Randomized-Matrix-Product
https://github.com/gnu-user/mcsc-6030-project


[132] K. Sen, M. Viswanathan, and G. Agha, “Statistical model checking of black-box prob-
abilistic systems,” in International Conference on Computer Aided Verification, 2004.

[133] K. Sen, M. Viswanathan, and G. Agha, “On statistical model checking of stochastic
systems,” in International Conference on Computer Aided Verification, 2005.

[134] V. Fernando, K. Joshi, D. Marinov, and S. Misailovic, “Identifying optimal
parameters for approximate randomized algorithms,” 2019. [Online]. Available:
http://approximate.computer/wax2019/papers/fernando.pdf

[135] A. Mahmoud, P. Reckamp, P. Tang, C. Fletcher, and S. Adve, “Approximate checkers,”
in Workshop on Approximate Computing, 2019.

[136] A. Afzal, D. S. Katz, C. L. Goues, and C. S. Timperley, “A study on the
challenges of using robotics simulators for testing,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.07368

[137] A. Afzal, C. L. Goues, M. Hilton, and C. S. Timperley, “A study on challenges of
testing robotic systems,” in IEEE 13th International Conference on Software Testing,
Validation and Verification, 2020.

[138] C. Menghi, S. Nejati, L. Briand, and Y. I. Parache, “Approximation-refinement testing
of compute-intensive cyber-physical models: An approach based on system identifica-
tion,” in IEEE/ACM 42nd International Conference on Software Engineering, 2020.

[139] C. P. Robert, G. Casella, and G. Casella, Monte Carlo statistical methods. Springer,
2004.

[140] J. Lin, H. Li, Y. Huang, Z. Huang, and Z. Luo, “Adaptive artificial neural network
surrogate model of nonlinear hydraulic adjustable damper for automotive semi-active
suspension system,” IEEE Access, 2020.

[141] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach.
Princeton University Press, 2010.

[142] G. Kewlani, J. Crawford, and K. Iagnemma, “A polynomial chaos approach to the
analysis of vehicle dynamics under uncertainty,” Vehicle System Dynamics, 2012.

[143] I. Sobol, “Global sensitivity indices for nonlinear mathematical models and their Monte
Carlo estimates,” Mathematics and Computers in Simulation, 2001.

[144] A. N. Sivakumar, S. Modi, M. V. Gasparino, C. Ellis, A. E. B. Velasquez, G. Chowd-
hary, and S. Gupta, “Learned visual navigation for under-canopy agricultural robots,”
2021.

[145] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source
multi-robot simulator,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2004.

132

http://approximate.computer/wax2019/papers/fernando.pdf
https://arxiv.org/abs/2004.07368


[146] X. Cheng, B. Khomtchouk, N. Matloff, and P. Mohanty, “Polynomial regression as an
alternative to neural nets,” 2019.

[147] R. Pan and H. Rajan, “On decomposing a deep neural network into modules,” in Pro-
ceedings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020.

[148] O. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann, “On the convergence of general-
ized polynomial chaos expansions,” Mathematical Modelling and Numerical Analysis,
2012.

[149] MaybeShewill-CV, “Unofficial implemention of lanenet model for real time lane de-
tection using deep neural network model,” https://github.com/MaybeShewill-CV/
lanenet-lane-detection.

[150] P. Du, Z. Huang, T. Liu, T. Ji, K. Xu, Q. Gao, H. Sibai, K. Driggs-Campbell, and
S. Mitra, “Online monitoring for safe pedestrian-vehicle interactions,” in IEEE 23rd
International Conference on Intelligent Transportation Systems, 2020.

[151] K. D. Julian and M. J. Kochenderfer, “Guaranteeing safety for neural network-based
aircraft collision avoidance systems,” in Digital Avionics Systems Conference, 2019.

[152] J. Feinberg and H. P. Langtangen, “Chaospy: An open source tool for designing meth-
ods of uncertainty quantification,” Journal of Computational Science, 2015.

[153] K. Konakli and B. Sudret, “Uncertainty quantification in high dimensional spaces
with low-rank tensor approximations,” in 1st International Conference on Uncertainty
Quantification in Computational Sciences and Engineering, 2015.

[154] J. Feinberg and H. P. Langtangen, “Truncation scheme - chaospy,” https://chaospy.
readthedocs.io/en/master/user guide/polynomial/truncation scheme.html.

[155] C. Fan, B. Qi, S. Mitra, and M. Viswanathan, “DryVR: Data-driven verification and
compositional reasoning for automotive systems,” in Computer Aided Verification,
2017.

[156] S. Jha, V. Raman, D. Sadigh, and S. Seshia, “Safe autonomy under perception un-
certainty using chance-constrained temporal logic,” Journal of Automated Reasoning,
2018.

[157] R. Calinescu, C. Imrie, R. Mangal, C. Păsăreanu, M. A. Santana, and G. Vázquez,
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